

#### PACKAGE SPECIFICATION

# HSL ARCHIVE

**PD07** 

## 1 SUMMARY

To find the **first** *m* **terms of the Taylor series expansions of**  $S(x) = sin\{A(x)\}$  **and**  $C(x) = cos\{A(x)\}$  such that

 $S'(x) \equiv A'(x)C(x),$   $S(0) = \sin(a_1),$  $C'(x) \equiv -A'(x)S(x),$   $C(0) = \cos(a_1).$ 

Let

 $A(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_{n+1} x^n$ 

then the two Taylor series expansions of the form

 $S(x) = s_1 + s_2 x + s_3 x^2 + \dots + s_m x^{m-1} + \dots$ 

and

 $C(x) = c_1 + c_2 x + c_3 x^2 + \dots + c_m x^{m-1} + \dots$ 

are obtained by considering identities between A(x), S(x) and C(x).

**ATTRIBUTES** — Version: 1.0.0. Remark: Formerly PD02D Types: PD07A; PD07AD. Original date: December 1970. Origin: M.J.Hopper, Harwell.

## **2** HOW TO USE THE PACKAGE

#### 2.1 Argument list

The single precision version

CALL PD07A(A,N,S,C,M)

The double precision version

CALL PD07AD(A,N,S,C,M)

- A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial A(x), so that  $A(j) = a_j, j=1, 2, ..., n+1$ . Note that the elements of A are temporarily modified by the subroutine to (J-1)\*A(J), J=2, 3, ..., N+1 but are restored to their original values before returning to the caller.
- N is an INTEGER variable which must be set by the user to n the degree of the polynomial A(x).
- S is a REAL (DOUBLE PRECISION in the D version) array of length at least *m* in which the subroutine will return the first *m* terms of the expansion S(x), i.e.,  $S(j) = s_j$ , j=1, 2, ..., m.
- C is a REAL (DOUBLE PRECISION in the D version) array of length at least *m* in which the subroutine will return the first *m* terms of the expansion C(x), i.e.,  $C(j) = c_j$ , j=1, 2, ..., m.
- M is an INTEGER variable which must be set by the user to m the number of terms required from the two expansions S(x) and C(x).

#### **3** GENERAL INFORMATION

Workspace: none.

Use of common: none.

Other routines called directly: none.

Input/output: none.

**Restrictions:**  $n \ge 0, m \ge 0$ .

## 4 METHOD

Assume  $S(x) = \sin\{A(x)\}$  and  $C(x) = \cos\{A(x)\}$ . At x=0 these two expressions give  $s_1 = \sin(a_1)$  and  $c_1 = \cos(a_1)$ . Differentiating the two expressions gives S'(x) = A'(x)C(x) and C'(x) = -A'(x)S(x). Then equating coefficients of like powers of x obtains the coupled recurrence relations

$$s_{1} = \sin(a_{1}),$$
  

$$s_{i} = \frac{1}{(i-1)} [a_{2}c_{i-1} + 2a_{3}c_{i-2} + \dots + (i-1)a_{i}c_{1}],$$

for *i* = 2, 3,..., *m*, and

$$c_{1} = \cos(a_{1}),$$
  

$$c_{i} = \frac{-1}{(i-1)} [a_{2}s_{i-1} + 2a_{3}s_{i-2} + \dots + (i-1)a_{i}s_{1}],$$

for i = 2, 3, ..., m.