1 SUMMARY

To find the first m terms of the Taylor series expansions of $S(x)=\sin \{A(x)\}$ and $C(x)=\cos \{A(x)\}$ such that

$$
\begin{array}{ll}
S^{\prime}(x) \equiv A^{\prime}(x) C(x), & S(0)=\sin \left(a_{1}\right) \\
C^{\prime}(x) \equiv-A^{\prime}(x) S(x), & C(0)=\cos \left(a_{1}\right) .
\end{array}
$$

Let

$$
A(x)=a_{1}+a_{2} x+a_{3} x^{2}+\ldots+a_{n+1} x^{n}
$$

then the two Taylor series expansions of the form

$$
S(x)=s_{1}+s_{2} x+s_{3} x^{2}+\ldots+s_{m} x^{m-1}+\ldots
$$

and

$$
C(x)=c_{1}+c_{2} x+c_{3} x^{2}+\ldots+c_{m} x^{m-1}+\ldots
$$

are obtained by considering identities between $A(x), S(x)$ and $C(x)$.
ATTRIBUTES - Version: 1.0.0. Remark: Formerly PD02D Types: PD07A; PD07AD. Original date: December 1970. Origin: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL PD07A (A, N, S, C, M)
The double precision version

```
CALL PD07AD (A,N,S,C,M)
```

A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial $A(x)$, so that $\mathrm{A}(j)=a_{j}, j=1,2, \ldots, n+1$. Note that the elements of A are temporarily modified by the subroutine to $(J-1) * A(J), J=2,3, \ldots, N+1$ but are restored to their original values before returning to the caller.
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the degree of the polynomial $A(x)$.
$S \quad$ is a REAL (DOUBLE PRECISION in the D version) array of length at least m in which the subroutine will return the first m terms of the expansion $S(x)$, i.e., $\mathrm{S}(\mathrm{j})=s_{j}, j=1,2, \ldots, m$.
C is a REAL (DOUBLE PRECISION in the D version) array of length at least m in which the subroutine will return the first m terms of the expansion $C(x)$, i.e., $\mathrm{C}(\mathrm{j})=c_{i}, j=1,2, \ldots, m$.

M is an INTEGER variable which must be set by the user to m the number of terms required from the two expansions $S(x)$ and $C(x)$.

3 GENERAL INFORMATION

Workspace: none.
Use of common: none.

Other routines called directly: none.
Input/output: none.
Restrictions: $\quad n \geq 0, m \geq 0$.

4 METHOD

Assume $S(x)=\sin \{A(x)\}$ and $C(x)=\cos \{A(x)\}$. At $x=0$ these two expressions give $s_{1}=\sin \left(a_{1}\right)$ and $c_{1}=\cos \left(a_{1}\right)$. Differentiating the two expressions gives $S^{\prime}(x)=A^{\prime}(x) C(x)$ and $C^{\prime}(x)=-A^{\prime}(x) S(x)$. Then equating coefficients of like powers of x obtains the coupled recurrence relations

$$
\begin{aligned}
& s_{1}=\sin \left(a_{1}\right), \\
& s_{i}=\frac{1}{(i-1)}\left[a_{2} c_{i-1}+2 a_{3} c_{i-2}+\ldots+(i-1) a_{i} c_{1}\right],
\end{aligned}
$$

for $i=2,3, \ldots, m$, and

$$
\begin{aligned}
& c_{1}=\cos \left(a_{1}\right), \\
& c_{i}=\frac{-1}{(i-1)}\left[a_{2} s_{i-1}+2 a_{3} s_{i-2}+\ldots+(i-1) a_{i} s_{1}\right],
\end{aligned}
$$

for $i=2,3, \ldots, m$.

