

PD08

HSL ARCHIVE

1 SUMMARY

To find the **first** *m* **terms of the Taylor series expansion of** $B(x) = \{A(x)\}^t$ such that $A(x)B'(x) \equiv tA'(x)B(x)$ and $B(0) = a_1^t$, Let

 $A(x) = a_1 + a_2 x + a_3 x^2 + \dots + a_{n+1} x^n,$

where the first k coefficients a_i , i=1, 2, ..., k can be zero with $a_{k+1} \neq 0$, then the Taylor series expansion

 $B(x) = x^{s}(b_{1} + b_{2}x + b_{3}x^{2} + \dots + b_{m}x^{m-1} + \dots$

where s = kt, is obtained by considering identities between A(x) and B(x).

ATTRIBUTES — Version: 1.0.0. Types: PD08A; PD08AD. Original date: December 1970. Origin: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version

CALL PD08A(A,N,B,M,T,S)

The double precision version

CALL PD08AD(A,N,B,M,T,S)

- A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial A(x), so that $A(j) = a_j$, j=1, 2, ..., n+1. If the first k elements A(J), J=1, K are zero the subroutine will detect this (the value of s = kt is returned in argument S).
- N is an INTEGER variable which must be set by the user to n the degree of the polynomial A(x).
- B is a REAL (DOUBLE PRECISION in the D version) array of length at least *m* in which the subroutine will return the first *m* terms of the expansion B(x), i.e., $B(j) = b_j$, j=1, 2, ..., m.
- M is an INTEGER variable which must be set by the user to m the number of terms required from the expansion B(x).
- T is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the power t to which the polynomial A(x) is to be raised.
- S is a REAL (DOUBLE PRECISION in the D version) variable which is set by the subroutine to the value of s = kt, where k is the number of leading coefficients of A(x) found to be zero.

3 GENERAL INFORMATION

Workspace: none.

Use of common: none.

Other routines called directly: none.

Input/output: none.

Restrictions: $n \ge 0, m \ge 0$.

PD08

4 METHOD

Let $A(x) = x^k \tilde{A}(x)$ then

 $\left[x^{k}\tilde{A}(x)\right]^{t} = x^{kt}\left[\tilde{A}(x)\right]^{t}$

and then letting $B(x) = x^{kt} \tilde{B}(x)$ it follows that

 $\tilde{B}(x) = [\tilde{A}(x)]^{t}$ with $b_1 = a_{k+1}^{t}$ at x = 0, $(a_{k+1} > 0)$.

Differentiating $\tilde{B}(x) = [\tilde{A}(x)]^{t}$ gives

 $\tilde{B}'(x) = t\tilde{A}'(x)[\tilde{A}(x)]^{t-1},$

hence

 $\tilde{A}(x)\tilde{B}'(x) = t\tilde{A}'(x)\tilde{B}(x).$

Equating coefficients of like powers of x then gives the reccurence relation

$$b_{1} = a_{k+1}^{t},$$

$$b_{i} = \frac{1}{(i-1)a_{k+1}} [(t-i+2)a_{k+2}b_{i-1} + (2t-i+3)a_{k+3}b_{i-2} + \dots$$

+ {(i-2)t-1} $a_{k+i-1}b_2$ + $(i-1)ta_{k+1}b_1$,

for *i*=2, 3,..., *m*. Note: if $a_{k+1} < 0$ the polynomial $\hat{A}(x) = (-1)A(x)$ will satisfy the conditions required by the subroutine and then $[A(x)]^t = (-1)^t [\hat{A}(x)]^t$.