1 SUMMARY

To find the first m terms of the Taylor series expansion of $B(x)=\{A(x)\}^{t}$ such that $A(x) B^{\prime}(x) \equiv t A^{\prime}(x) B(x)$ and $B(0)=a_{1}^{t}$, Let

$$
A(x)=a_{1}+a_{2} x+a_{3} x^{2}+\ldots+a_{n+1} x^{n}
$$

where the first k coefficients $a_{i}, i=1,2, \ldots, k$ can be zero with $a_{k+1} \neq 0$, then the Taylor series expansion

$$
B(x)=x^{s}\left(b_{1}+b_{2} x+b_{3} x^{2}+\ldots+b_{m} x^{m-1}+\ldots\right.
$$

where $s=k t$, is obtained by considering identities between $A(x)$ and $B(x)$.
ATTRIBUTES - Version: 1.0.0. Types: PD08A; PD08AD. Original date: December 1970. Origin: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL PD08A (A, N, B, M, T, S $)$
The double precision version

```
CALL PD08AD (A,N,B,M,T,S)
```

A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial $A(x)$, so that $A(j)=a_{j}, j=1,2, \ldots, n+1$. If the first k elements $A(J), J=1, K$ are zero the subroutine will detect this (the value of $s=k t$ is returned in argument S).
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the degree of the polynomial $A(x)$.
B is a REAL (DOUBLE PRECISION in the D version) array of length at least m in which the subroutine will return the first m terms of the expansion $B(x)$, i.e., $\mathrm{B}(\mathrm{j})=b_{j}, j=1,2, \ldots, m$.
M is an INTEGER variable which must be set by the user to m the number of terms required from the expansion $B(x)$.

T is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the power t to which the polynomial $A(x)$ is to be raised.
$S \quad$ is a REAL (DOUBLE PRECISION in the D version) variable which is set by the subroutine to the value of $s=k t$, where k is the number of leading coefficients of $A(x)$ found to be zero.

3 GENERAL INFORMATION

Workspace: none.
Use of common: none.
Other routines called directly: none.
Input/output: none.
Restrictions: $\quad n \geq 0, m \geq 0$.

4 METHOD

Let $A(x)=x^{k} \tilde{A}(x)$ then

$$
\left[x^{k} \tilde{A}(x)\right]^{t}=x^{k t}[\tilde{A}(x)]^{t}
$$

and then letting $B(x)=x^{k} \tilde{B}(x)$ it follows that

$$
\tilde{B}(x)=[\tilde{A}(x)]^{t} \text { with } b_{1}=a_{k+1}^{t} \text { at } x=0,\left(a_{k+1}>0\right) .
$$

Differentiating $\tilde{B}(x)=[\tilde{A}(x)]^{t}$ gives

$$
\tilde{B}^{\prime}(x)=t \tilde{A}^{\prime}(x)[\tilde{A}(x)]^{t-1},
$$

hence

$$
\tilde{A}(x) \tilde{B}^{\prime}(x)=t \tilde{A}^{\prime}(x) \tilde{B}(x) .
$$

Equating coefficients of like powers of x then gives the reccurence relation

$$
\begin{aligned}
& b_{1}=a_{k+1}^{t}, \\
& b_{i}=\frac{1}{(i-1) a_{k+1}}\left[(t-i+2) a_{k+2} b_{i-1}+(2 t-i+3) a_{k+3} b_{i-2}+\ldots\right.
\end{aligned}
$$

$$
+\{(i-2) t-1\} a_{k+i-1} b_{2}+(i-1) t a_{k+1} b_{1]},
$$

for $i=2,3, \ldots, m$. Note: if $a_{k+1}<0$ the polynomial $\hat{A}(x)=(-1) A(x)$ will satisfy the conditions required by the subroutine and then $[A(x)]^{t}=(-1)^{t}[\hat{A}(x)]^{t}$.

