1 SUMMARY

To find the first m terms of the Taylor series expansion of $C(x)=A(x) B(x)$ such that $C(x) \equiv A(x) B(x)$. Let

$$
A(x)=a_{1}+a_{2} x+a_{3} x^{2}+\ldots+a_{n+1} x^{n}
$$

where the first r coefficients $a_{i}, i=1,2, \ldots, r$ can be zero with $a_{r+1} \neq 0$, and let

$$
B(x)=b_{1}+b_{2} x+b_{3} x^{2}+\ldots+b_{l+1} x^{l}
$$

where the first s coefficients $b_{i}, i=1,2, \ldots, s$ can be zero with $b_{s+1} \neq 0$, then the Taylor series expansion

$$
C(x)=x^{k}\left(c_{1}+c_{2} x+c_{3} x^{2}+\ldots+c_{m} x^{m-1}+\ldots\right),
$$

where $k=r+s$, is obtained by considering identities between $A(x), B(x)$ and $C(x)$.
ATTRIBUTES - Version: 1.0.0. Types: PD09A; PD09AD. Original date: December 1970. Origin: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL PD09A (A, N, B, L, C, M, K)

The double precision version

CALL PD09AD (A, N, B, L, C, M, K)
A is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial $A(x)$, so that $\mathrm{A}(j)=a_{j}, j=1,2, \ldots, n+1$. If the first r elements of A are zero the subroutine will detect this and use it to determine k (see argument K).
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n the degree of the polynomial $A(x)$.
B is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients of the polynomial $B(x)$, so that $\mathrm{B}(j)=b_{j}, j=1,2, \ldots, l+1$. If the first s elements of B are zero the subroutine will detect this and use it to determine k (see argument K).

L is an INTEGER variable which must be set by the user to l the degree of the polynomial $B(x)$.
C is a REAL (DOUBLE PRECISION in the D version) array of length at least m in which the subroutine will return the first m terms of the expansion $C(x)$, i.e., $\mathrm{C}(j)=c_{i}, j=1,2, \ldots, m$.

M is an INTEGER variable which must be set by the user to m the number of terms required from the expansion $C(x)$.
$\mathrm{K} \quad$ is an INTEGER variable which is set by the subroutine to $k=r+s$, where r and s are the number of leading coefficients of $A(x)$ and $B(x)$ found to be zero.

3 GENERAL INFORMATION

Workspace: none.
Use of common: none.
Other routines called directly: none.
Input/output: none.
Restrictions: $\quad n \geq 0, l \geq 0, m \geq 0$.

4 METHOD

Assume $C(x)=A(x) B(x)$, then equating coefficients of like powers of x gives the recurrence relation
$c_{i}=a_{r+1} b_{s+i}+a_{r+2} b_{s+i-1}+\ldots+a_{r+i} b_{s+1}$,
for $i=1,2, \ldots, m$.

