

HSL ARCHIVE

1 SUMMARY

To obtain the coefficients a_j , j=0, 1,..., n of a polynomial P(x) of degree n which is expressed as a linear combination of orthogonal polynomials $Q_k(x)$, k=0, 1,..., n, i.e.

 $a_0 + a_1 x + \dots + a_n x^n \equiv c_0 Q_0(x) + c_1 Q_2(x) + \dots + c_n Q_n(x)$

where the polynomials $Q_k(x)$ are defined by the recurrence relation

 $Q_0(x) = 1,$ $Q_1(x) = x - \alpha_0,$ $Q_{k+1}(x) = (x - \alpha_k)Q_k(x) - \beta_k Q_{k-1}(x)$ k=1, 2, ..., n-1.

ATTRIBUTES — Version: 1.0.0. Remark: Can be used to obtain the coefficients of polynomial fits produced by VC01A. Types: PE08A; PE08AD. Original date: April 1964. Origin: S.Northcliffe, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list

The single precision version

CALL PE08A(ALPHA, BETA, C, A, N)

The double precision version

CALL PE08AD(ALPHA, BETA, C, A, N)

- ALPHA is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the recurrence relation parameters α_i , i.e. set ALPHA(i+1) to α_i , *i*=0, 1, 2,..., *n*-1.
- BETA is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the recurrence relation parameters β_i , i.e. set BETA(i+1) to β_i , i=1, 2, ..., n-1. Note that BETA(1) need not be set.
- C is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the coefficients c_i in the orthogonal polynomial expansion given in the summary, i.e. set C(i+1) to c_i , i=0, 1, 2,..., n.
- A is a REAL (DOUBLE PRECISION in the D version) array of length at least n+1 which the routine will set to the coefficients a_i of the equivalent polynomial as defined in the summary, i.e. it will set A(i+1) to a_i , i=0, 1, 2, ..., n.
- N is an INTEGER variable which must be set by the user to *n* the degree of the polynomial. Restriction: $0 \le n \le 200$.

3 GENERAL INFORMATION

Workspace: None.

Use of common: None.

Other routines called directly: None.

Input/output: None.

Restrictions: None.