## 1 SUMMARY

To evaluate the integral

$$
\int_{a}^{b} f(x) d x
$$

using one of five Newton-Coates $m$ strip formulae: Trapesoidal rule ( $m=1$ ), Simpson's rule ( $m=2$ ), the $\frac{3}{8}$-th rule ( $m=3$ ) and the four-strip formula ( $m=4$ ) and the five-strip formula ( $m=5$ ).

The user chooses the integration step $h$ and supplies the tabulated integrand values: $f_{i}, f_{i+1}, f_{i+2}, \ldots, f_{i+n m}$, at equal intervals $h$ in $a \leq x \leq b$; where $n$ is the number of times the quadrature must be applied to cover the range and $m$ is the number values required by each application of the quadrature.

Double length accumulation of intermediate results is carried out to minimize rounding errors.
ATTRIBUTES - Version: 1.0.0. Remark: One of the adaptive quadrature subroutines, QA02, QA04 or QA05 may give better results than QA01. Types: QA01A; QA01AD. Original date: August 1967. Origin: M.J.Hopper, Harwell.

## 2 HOW TO USE THE PACKAGE

### 2.1 Argument list and calling sequence

The single precision version
$\mathrm{Q}=\mathrm{QA} 01 \mathrm{~A}(\mathrm{~F}, \mathrm{I}, \mathrm{M}, \mathrm{N}, \mathrm{H})$
The double precision version

```
DOUBLE PRECISION QA01AD,Q
Q=QA01AD (F,I,M,N,H)
```

Note: QA01A and QA01AD are FUNCTION subroutines and QA01AD must be declared DOUBLE PRECISION in the calling program.

F is a REAL (DOUBLE PRECISION in the D version) array of length at least $i+m n$ in which the user must put the tabulated values of $f(x)$. The value of $f(a)$ should be stored in $\mathrm{F}(\mathrm{i})$ and the rest following so that $\mathrm{F}(i+j)=$ $f(a+j h) j=0,1,2, \ldots, m n$. The argument is not altered by the subroutine.
I is an INTEGER variable which must be set by the user to $i$ the subscript of the element of F containing the value of $f(a)$. Normally $\mathrm{i}=1$. This argument is not altered by the subroutine.

M is an INTEGER variable which must be set by the user to $m$ to choose the quadrature formula (Note that the quadrature uses $m+1$ function values). The values of $m$ accepted by QA01 are:

1 Trapesoidal rule,
2 Simpson's rule,
3 The three-eighths rule,
4 The four-strip formula,
5 The five-strip formula.
$\mathrm{N} \quad$ is an INTEGER which must be set by the user to $n$ the number of times the quadrature is to be applied to cover the range from $a$ to $b=a+m n h$.
is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to $h$ the tabulation interval. If the value of the integral is required to a prescribed accuracy it is the user's responsibility to choose an $h$ which is sufficiently small. See section 4 for comments on choosing $h$ and note that $h=(b-a) / m n$.

## 3 GENERAL INFORMATION

Use of common: None.
Workspace: None.
Other routines called directly: None.
Input/output: None.

## 4 METHOD

The first five Newton-Coates quadrature formulae with error terms are:
Trapesoidal:

$$
Q=\frac{h}{2}\left(f_{0}+f_{1}\right), \quad E_{1}=-\frac{h^{3}}{12} f^{(2)}(\xi)
$$

Simpson's: $\quad Q=\frac{h}{3}\left(f_{0}+4 f_{1}+f_{2}\right), \quad E_{2}=-\frac{h^{5}}{90} f^{(4)}(\xi)$,
${ }_{8}^{3}$-ths rule:

$$
Q=\frac{3 h}{8}\left(f_{0}+3 f_{1}+3 f_{2}+f_{3}\right), \quad E_{3}=-\frac{3 h^{5}}{80} f^{(4)}(\xi)
$$

Four-strip:

$$
Q=\frac{2 h}{45}\left(7 f_{0}+32 f_{1}+12 f_{2}+32 f_{3}+7 f_{4}\right), \quad E_{4}=-\frac{8 h^{7}}{945} f^{(6)}(\xi),
$$

Five-strip:

$$
Q=\frac{5 h}{288}\left(19 f_{0}+75 f_{1}+50 f_{2}+50 f_{3}+75 f_{4}+19 F_{5}\right), \quad E_{5}=-\frac{275 h^{7}}{12096} f^{(6)}(\xi),
$$

where for illustration purposes the integration is made over the points $x_{0}, x_{1}, \ldots, x_{m}$ and where $f^{(k)}(\xi)$ is the value of the $k$-th derivative at some point $\xi$, in $x_{0} \leq \xi \leq x_{m}$.

The step size required to achieve a given accuracy $\varepsilon$ can be determined by finding an $h$ such that $\left|E_{m}\right|<\varepsilon$. This is not always possible unless a reasonable estimate of the derivative value is available. An alternative procedure is to carry out a sequence of integrations, halving $h$ at each stage and observing the convergence of the sequence of values so obtained. A further possibility is to use finite differences to approximate the derivative values. However, this is likely to prove just as costly as repeating the integration. Note: the error term for the whole range $a$ to $b$ is $n E_{m}$ where in this case $a \leq \xi \leq b$.

## 5 EXAMPLE OF USE

Suppose we require to evaluate the integral

$$
Q=\int_{0}^{1} \sin x d x
$$

with an absolute accuracy of $10^{-12}$ and we chose to use Simpson's rule, i.e. $m=2$.
First decide the value of $h$ that will achieve the accuracy. Let $n$ be the number of times the quadrature must be applied to cover the range 0 to 1 and take the error estimate

$$
E=n\left|E_{2}\right|=\frac{n h^{5}}{90}\left|f^{(4)}(\xi)\right| \quad 0 \leq \xi \leq 1
$$

Now $h$ is required such that $E<\varepsilon=10^{-12}$. Using the fact that $\left|f^{(4)}(x)\right|=|\sin (x)| \leq 1$ for all $x$ and that $h=\frac{1}{2 n}$ we have that

$$
\frac{1}{90 \times 2^{5} \times n^{4}}<\varepsilon
$$

so that

$$
n=\left[\left(\frac{1}{90 \times 2^{5} \times \varepsilon}\right)^{\frac{1}{4}}\right]+1
$$

will do. The value of $h$ is given by $h=1 / 2 n$.
The following code might then be used:

```
DOUBLE PRECISION F(200),X,H,Q,QA01AD
```

C SET THE ACCURACY REQUIRED $E P S=1 E-12$
C NUMBER OF TIMES QUADRATURE IS TO BE APPLIED $\mathrm{N}=\operatorname{INT}(1 . /(2880 . * E P S) * * .25\}+1$
C TABULATION INTERVAL H=. 5D0/DFLOAT (N)
C SELECT SIMPSON'S RULE
$\mathrm{M}=2$
$\mathrm{N} 1=\mathrm{M} * \mathrm{~N}+1$
C SET ARRAY OF INTEGRAND VALUES
DO 10 J=1,N1
$F(J)=\operatorname{DSIN}(H * \operatorname{DFLOAT}(J-1))$
10 CONTINUE
C SET POSITION OF FIRST INTEGRAND VALUE (IN F(1))
I=1
C EVALUATE THE INTEGRAL
$Q=Q A 01 A D(F, I, M, N, H)$


