1 SUMMARY

To tabulate an integral function of the form

$$
g(x)=g(a)+\int_{a}^{x} f(t) d t
$$

at points $x=a, a+h, \ldots, a+m h$ to a specified accuracy.
The subroutine uses a variable step Simpson's rule using at each step an integration step, based on 4th differences, which is chosen small enough to achieve the required accuracy.

The user must specify a minimum integration step-size and provide a subroutine to evaluate the integrand $f(x)$.
ATTRIBUTES - Version: 1.0.0. Types: QA03A; QA03AD. Calls: CALCIN (a user subroutine). Original date: March 1963. Origin: M.J.D.Powell, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list

The single precision version
CALL QAO3A (G, H, A, B, ACC,DXMIN)

The double precision version

CALL QA03AD (G, H, A, B, ACC, DXMIN)
G is a REAL (DOUBLE PRECISION in the D version) array into which the subroutine will put the values of $g(x)$ at the tabulation points. The user must set $\mathrm{G}(1)$ to the value of $g(a)$ before calling the subroutine. The array must be at least of length $m+1$, see section 1 for a definition of m.

H is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to h the interval of tabulation. Restriction: $h \leq \frac{1}{2}(b-a)$.
A is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to a the first tabulation point.
B is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to b the end of the range of tabulation.

ACC is a REAL variable which must be set by the user to the absolute accuracy required in the tabulated values of $g(x)$.

DXMIN is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the minimum step length to be used in the evaluation of the integral by Simpson's Rule. Restriction: DXMIN $<\frac{1}{4} h$.

This parameter may be used to limit the amount of time spent trying unsuccessfully to integrate an ill-defined $f(t)$. If trouble is not expected set DXMIN very small relative to h and ACC. Note: for each step of the integration the step size δx must approximately satisfy

$$
\text { ACC }>\frac{\delta x^{5}}{90}\left|f^{(4)}(\xi)\right| \quad a \leq \xi \leq b
$$

where $f^{(4)}(t)$ is the fourth derivative of $f(t)$. If the subroutine is unable to achieve the accuracy with a step length \geq DXMIN a message is printed to that effect. In this event the array G will contain the values of $g(x)$ up to the
point of failure and the rest of the array will be set to zero.

2.2 The subroutine to evaluate $f(t)$

The user must provide a subroutine called CALCIN to calculate a value of $f(t)$ for any t in the range a to $a+m h$ where m equals the largest integer less than or equal to $(b-a) / h+\frac{1}{2}$. The subroutine must be of the form

```
SUBROUTINE CALCIN(T,F)
```

T is a REAL (DOUBLE PRECISION in the D version) variable which will contain on entry the value of t for the required $f(t)$.
F is a REAL (DOUBLE PRECISION in the D version) variable which CALCIN must set to the value of $f(t)$.

3 GENERAL INFORMATION

Use of common: None.
Workspace: None.
Other routines called directly: requires a user written subroutine called CALCIN.
Input/output: error message, see DXMIN.

4 METHOD

The integration is worked out by Simpson's Rule, the step length being chosen by the subroutine so that the specified accuracy is achieved in all tabulated values of $g(x)$. This step length is adjusted automatically by the subroutine for different parts of the range so that unnecessary values of $f(t)$ are not called for.

