

HSL ARCHIVE

1 SUMMARY

To integrate a cubic spline S(x) between limits which are knot points, i.e. given knots ξ_i , function values $S_i = S(\xi_i)$ and derivative values $g_i = S'(x_i)$, i=1,2,...,n $(n \ge 2)$ evaluates the integral

$$\int_{\xi_j}^{\xi_k} S(x)\,dx$$

where ξ_i and ξ_k are two knot points of S(x).

ATTRIBUTES — Version: 1.0.0. Remark: see QG02 for when the limits are not knot points. Types: QG01A; QG01AD. Original date: March 1974. Origin: M.J.Hopper, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list and calling sequence

The single precision version

Q=QG01A(J,K,N,XI,S,G)

The double precision version

DOUBLE PRECISION Q - - -Q=QG01AD(J,K,N,XI,S,G)

The arguments

- J is an INTEGER variable which must be set by the user to specify which knot point is to be used as the lower limit of the integration. See next argument.
- K is an INTEGER variable which must be set by the user to specify which knot point is to be used as the upper limit of the integration.

If either J or K is outside the range of 1 to *n* the integral is evaluated on the assumption that S(x) = 0 for $x < \xi_1$ or $x > \xi_n$. If J > K the sign of the integral is reversed.

- N is an INTEGER variable which must be set by the user to *n* the number of knot points. **Restriction:** $n \ge 2$.
- XI is a REAL (DOUBLE PRECISION in the D version) array of length at least *n* which must be set by the user to the knot values ξ_i *i*=1, 2,..., *n*. The knots must be ordered so that $\xi_1 \leq \xi_2 \leq ... \leq \xi_n$.
- S is a REAL (DOUBLE PRECISION in the D version) array of length at least *n* which must be set by the user to the spline values $S_i = S(\xi_i)$ *i*=1, 2,..., *n*.
- G is a REAL (DOUBLE PRECISION in the D version) array of length at least *n* which must be set by the user to the first derivative values of the spline at the knots, i.e. set to $g_i = S'(\xi_i)$ *i*=1, 2,..., *n*.

Function value

QG01A and QG01AD are Fortran FUNCTION subroutines and will be set to the value of the integral on return.

3 GENERAL INFORMATION

Use of common: none.

Workspace: none.

Other routines called directly: none.

Input/output: none.

Restrictions: $n \ge 2, \xi_1 \le \xi_2 \le ... \le \xi_n$.

4 METHOD

Let the knots be

 ξ_i , *i*=1, 2,..., *n*,

the spline values be

 $S_i = S(\xi_i)$ i=1, 2, ..., n,

and the first derivative values be

$$g_i = \frac{dS(x)}{dx} \bigg|_{x=\xi_i} \quad i=1, 2, ..., n;$$

then the integration over one knot interval, the *i*-th say, is simply

$$Q_{i} = \frac{h}{2} \{S_{i+1} + S_{i}\} - \frac{h^{2}}{12} \{g_{i+1} - g_{i}\}$$

where $h = \xi_{k+1} - \xi_k$.

The integral over ξ_j to ξ_k is obtained by accumulating the integrals over the knot intervals in *j* to *k*. The subroutine first makes sure that *j* and *k* are sensible.