1 SUMMARY

To evaluate the complement of the cumulative distribution function of the variance ratio distribution with (n, m) degrees of freedom.

$$
P(n, m, F)=\frac{n^{\frac{n}{2}} m^{\frac{m}{2}}}{B\left(\frac{n}{2}, \frac{m}{2}\right)} \int_{F}^{\infty} \frac{f^{\frac{n-2}{2}}}{(n f+m)^{\frac{n+m}{2}}} d f \quad 0 \leq F \leq \infty
$$

where n and m are positive integers.
Series expansions in $\sin \alpha$ and $\cos \alpha$ are used for the integral, where $\alpha=\tan ^{-1} \sqrt{\frac{n F}{m}}$.
ATTRIBUTES - Version: 1.0.0. Types: SA03A; SA03AD. Original date: December 1970. Origin: D.G.Papworth, MRC, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL SA03A (F,N,M,P)
The double precision version
CALL SA03AD (F,N,M,P)
F is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the F value
$\mathrm{N} \quad$ is an INTEGER which must be set by the user to n the first number of degrees of freedom. Restriction: $n>0$.
M is an INTEGER which must be set by the user to m the second number of degrees of freedom. Restriction: $m>0$.
P is a REAL (DOUBLE PRECISION in the D version) variable which is set by the subroutine to the value of $P(n, m, F)$.

3 GENERAL INFORMATION

Use of common: none.
Workspace: none.
Other routines called directly: none.
Input/output: none.
Restrictions: $\quad n>0, m>0$.

4 METHOD

A series expansion for the integral is used. Let $\alpha=\tan ^{-1} \sqrt{\frac{n F}{m}}$, then if n is even

$$
P(n, m, F)=\cos ^{m} \alpha\left\{1+\frac{m}{2} \sin ^{2} \alpha+\frac{m(m+2)}{2.4} \sin ^{4} \alpha+\ldots+\frac{m(m+2) \ldots(m+n-4)}{2.4 \ldots(n-2)} \sin ^{n-2} \alpha\right\}
$$

If m is even,

$$
P(n, m, F)=1-\sin ^{n} \alpha\left\{1+\frac{n}{2} \cos ^{2} \alpha+\frac{n(n+2)}{2.4} \cos ^{4} \alpha+\ldots+\frac{n(n+2) \ldots(n+m-4)}{2.4 \ldots(m-2)} \cos ^{m-2} \alpha\right\}
$$

If n and m are both odd

$$
\begin{aligned}
P(n, m, F) & =\frac{2}{\pi} \frac{2.4 \ldots(m-1)}{1.3 \ldots(m-2)} \cos ^{m} \alpha \sin \alpha\left\{1+\frac{m+1}{3} \sin ^{2} \alpha+\frac{(m+1)(m+3)}{3.5} \sin ^{4} \alpha+\ldots\right. \\
& \left.\ldots+\frac{(m+1)(m+3) \ldots(m+n-4)}{3.5 \ldots(n-2)} \sin ^{n-3} \alpha\right\} \\
& -\frac{2 \sin \alpha \cos \alpha}{\pi}\left\{1+\frac{2}{3} \cos ^{2} \alpha+\frac{2.4}{3.5} \cos ^{4} \alpha+\ldots+\frac{2.4 \ldots(m-3)}{3.5 \ldots(m-2)} \cos ^{m-3} \alpha\right\}+1-\frac{2 \alpha}{\pi}
\end{aligned}
$$

where, if $n=1$, the first series is to be taken as zero, and if $m=1$, the second series is to be taken as zero and the factor

$$
\frac{2.4 \ldots(m-1)}{3.5 \ldots(m-2)}
$$

is to be taken as unity.

