1 SUMMARY

Calculates the coefficients of the piece-wise cubic function which interpolates n given function values f_{i} at points $x_{i}, i=1,2, \ldots, n$.

The interpolation function derived will be continuous and have continuous first derivatives. If the function values lie on a quadratic polynomial, this will be represented exactly. The subroutine returns the coefficients of the $n-1$ cubics $C_{i}(\theta)$ corresponding to the $n-1$ intervals x_{i} to x_{i+1} in the transformed variables

$$
\theta=\frac{x-x_{i}}{x_{i+1}-x_{i}}, \quad \text { i.e. } \quad C_{i}(\theta)=a_{1}+a_{2} \theta+a_{3} \theta^{2}+a_{4} \theta^{3} \quad 0 \leq \theta \leq 1
$$

ATTRIBUTES - Version: 1.0.0. Types: TB03A; TB03AD. Original date: July 1964. Origin: D.Miller, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version
CALL TB03A ($\mathrm{N}, \mathrm{F}, \mathrm{X}, \mathrm{A}$)

The double precision version

```
CALL TB03AD (N,F,X,A)
```

$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to n, the number of function values passed in the array F . N is not altered by the subroutine. Restriction: $n \geq 4$.
F is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the function values $f_{i}, i=1,2, \ldots, n$. F is not altered by the subroutine.

X is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to contain the values of the points $x_{i}, i=1,2, \ldots, n . \mathrm{X}$ is not altered by the subroutine. Restriction: the points must be ordered and distinct, i.e. $x_{1}<x_{2}<\ldots<x_{n}$.

A is a two-dimensional REAL (DOUBLE PRECISION in the D version) array of first dimension 4 and second dimension at least $n-1$, which is set by the subroutine to the coefficients of the cubics for the $n-1$ intervals. In the interval x_{i} to x_{i+1} the function is represented by the cubic

$$
C_{i}(\theta)=a_{1, i}+a_{2, i} \theta+a_{3, i} \theta^{2}+a_{4, i} \theta^{3}
$$

which is a good approximation to $f\left\{(1-\theta) x_{i}+\theta x_{i+1}\right\}$. The values of $a_{j, i}, j=1,2,3,4$ and $i=1,2, \ldots, n-1$ are returned in $A(J, I), J=1,4$ and $I=1, N-1$.

Note that the values of f_{i} and f_{i+1} are given by substituting $\theta=0$ and $\theta=1$ respectively, and values for x between x_{i} and x_{i+1} are given by values of θ between 0 and 1 .

3 GENERAL INFORMATION

Use of common: None.
Workspace: None.
Other routines called directly: None.
Input/output: None.
Restrictions: None.

