## 1 SUMMARY

This subroutine finds a periodic cubic spline $\boldsymbol{S}(\boldsymbol{x})$ that interpolates $\boldsymbol{n}$ function values. The user supplies the function values $f_{1}, f_{2}, \ldots f_{n}$ (with $f_{1}=f_{n}$ ) at points $x_{1}<x_{2}<\ldots<x_{n}$ (which need not be equally spaced) and the subroutine finds derivative values $S^{\prime}\left(x_{i}\right)$ at the points $x_{i} . S(x)$ is cubic on each interval $\left(x_{i}, x_{i+1}\right), i=1,2, \ldots n-1$, is continuous with two continuous derivatives at the points $x_{i}, i=2,3, \ldots n-1$ and $S^{\prime}\left(x_{1}\right)=S^{\prime}\left(x_{n}\right), S^{\prime \prime}\left(x_{1}\right)=S^{\prime \prime}\left(x_{n}\right)$. The subroutine TG01 can be used to find values of $S(x)$.

ATTRIBUTES - Version: 1.0.0. Types: TB15A, TB15AD. Calls: None. Original date: April 1985. 72 lines. Origin: J.K.Reid, Harwell. Remark: This is a slightly rewritten version of TB05 and supersedes it.

## 2 HOW TO USE THE PACKAGE

### 2.1 Argument list

The single precision version
CALL TB15A(N,X,F,D,WORK,LP)
The double precision version.
CALL TB15AD (N, X, F, D, WORK, LP)
$\mathrm{N} \quad$ is an INTEGER variable which must be set by the user to $n$, the number of data points. It is not altered. Restriction: $n \geq 4$.
$\mathrm{X} \quad$ is a REAL (DOUBLE PRECISION in the D version) array of length at least $n$ which the user must set to the points $x_{i}, i=1,2, \ldots n$. It is not altered. Restriction: $x_{1}<x_{2}<\ldots<x_{n}$.
F is a REAL (DOUBLE PRECISION in the D version) array of length at least $n$ which the user must set to the function values $f_{1}, f_{2}, \ldots f_{n}$. It is not altered. Restriction: $f_{1}=f_{n}$.

D is a REAL (DOUBLE PRECISION in the D version) array of length at least $n$ which need not be set by the user. The subroutine puts the values of the first derivatives of the spline $S(x)$ at the points $x_{i}$ in $\mathrm{D}(i), i=1,2, \ldots n$.
WORK is a REAL (DOUBLE PRECISION in the D version) array of length at least $3 n$ which is used as a workspace. W (1) is set to zero on a successful return and to a nonzero value on a failure. The subroutine prints a diagnostic message when $n<4$, a point $x_{i}$ is out of order (see X ) or $f_{1} \neq f_{n}$ (see F ). W (1) is set to $1,2,3$ respectively.

LP is an INTEGER variable which must be set by the user to a unit number for printing or to a non-positive number if printing is to be suppressed.

## 3 GENERAL INFORMATION

Use of common: None.
Other routines called directly: None.
Input/output: Output is under the control of argument LP.
Restrictions: $\quad n \geq 4, x_{1}<x_{2}<\ldots<x_{n}, f_{1}=f_{n}$

## 4 METHOD

The continuity of the second derivative $S^{\prime \prime}(x)$ at $x_{i}, i=2,3, \ldots n-1$, can be expressed as a linear equation involving $S^{\prime}\left(x_{i-1}\right), S^{\prime}\left(x_{i}\right)$ and $S^{\prime}\left(x_{i+1}\right)$. Similarly the continuity of $S^{\prime \prime}(x)$ at $x_{1}$ can be expressed as a linear equation involving $S^{\prime}\left(x_{n-1}\right), S^{\prime}\left(x_{1}\right)$ and $S^{\prime}\left(x_{2}\right)$. Thus the unknown derivatives $S^{\prime}\left(x_{i}\right), i=1,2, \ldots n-1$, satisfy a set of $n-1$ linear equations whose matrix is tridiagonal except for entries in positions $(1, n-1)$ and ( $n-1,1$ ). This set of equations is set up and solved by Gaussian elimination. No interchanges are needed because the matrix is diagonally dominant.

## 5 EXAMPLE OF USE

As a very simple example the following code finds a periodic cubic spline that interpolates the function values for the given data.

```
DOUBLE PRECISION X(9),F(9),D(9),W(27)
DATA X/0.0000D0,2.0000D0,4.0000D0,6.0000D0,8.0000D0,
* 1.0000D1,1.2000D1,1.4000D1,1.6000D1/
DATA F/0.0000D0,1.0000D0,2.0000D0,4.0000D0,5.0000D0,
* 4.0000D0,3.0000D0,2.0000D0,0.0000D0/
DATA N/9/
DATA LP/6/
CALL TB05AD (N,X,F,D,W,LP)
WRITE (6,10)
FORMAT(10X,' X(I)',10X,' F(I)',10X,' D(I)')
WRITE (6,20)(X(I),F(I),D(I),I=1,N)
FORMAT(/(3F16.4))
STOP
END
```

This produces the following output

| X(I) | F (I) |  |
| :--- | :--- | ---: |
| 0.0000 | 0.0000 | -0.2946 |
| 2.0000 | 1.0000 | 0.6429 |
| 4.0000 | 2.0000 | 0.7232 |
| 6.0000 | 4.0000 | 0.9643 |
| 8.0000 | 5.0000 | -0.0804 |
| 10.0000 | 4.0000 | -0.6429 |
| 12.0000 | 3.0000 | -0.3482 |
| 14.0000 | 2.0000 | -0.9643 |
| 16.0000 | 0.0000 | -0.2946 |

