

HSL ARCHIVE

1 SUMMARY

This subroutine finds a periodic cubic spline S(x) that interpolates *n* function values. The user supplies the function values f_1, f_2, \ldots, f_n (with $f_1=f_n$) at points $x_1 < x_2 < \ldots < x_n$ (which need not be equally spaced) and the subroutine finds derivative values $S'(x_i)$ at the points $x_i, S(x)$ is cubic on each interval $(x_i, x_{i+1}), i=1,2, \ldots, n-1$, is continuous with two continuous derivatives at the points $x_i, i=2,3, \ldots, n-1$ and $S'(x_1) = S'(x_n), S''(x_1) = S''(x_n)$. The subroutine TG01 can be used to find values of S(x).

ATTRIBUTES — Version: 1.0.0. Types: TB15A, TB15AD. Calls: None. Original date: April 1985. 72 lines. Origin: J.K.Reid, Harwell. Remark: This is a slightly rewritten version of TB05 and supersedes it.

2 HOW TO USE THE PACKAGE

2.1 Argument list

The single precision version

CALL TB15A(N,X,F,D,WORK,LP)

The double precision version.

CALL TB15AD(N,X,F,D,WORK,LP)

- N is an INTEGER variable which must be set by the user to n, the number of data points. It is not altered. Restriction: $n \ge 4$.
- X is a REAL (DOUBLE PRECISION in the D version) array of length at least *n* which the user must set to the points x_i , i=1,2,...n. It is not altered. **Restriction:** $x_1 < x_2 < ... < x_n$.
- F is a REAL (DOUBLE PRECISION in the D version) array of length at least *n* which the user must set to the function values $f_1, f_2, \ldots f_n$. It is not altered. **Restriction:** $f_1 = f_n$.
- D is a REAL (DOUBLE PRECISION in the D version) array of length at least *n* which need not be set by the user. The subroutine puts the values of the first derivatives of the spline S(x) at the points x_i in D(i), i=1,2,...n.
- WORK is a REAL (DOUBLE PRECISION in the D version) array of length at least 3n which is used as a workspace. W(1) is set to zero on a successful return and to a nonzero value on a failure. The subroutine prints a diagnostic message when n<4, a point x_i is out of order (see X) or $f_1 \neq f_n$ (see F).W(1) is set to 1,2,3 respectively.
- LP is an INTEGER variable which must be set by the user to a unit number for printing or to a non-positive number if printing is to be suppressed.

3 GENERAL INFORMATION

Use of common: None.

Other routines called directly: None.

Input/output: Output is under the control of argument LP.

Restrictions: $n \ge 4, x_1 < x_2 < ... < x_n, f_1 = f_n$

TB15

4 METHOD

The continuity of the second derivative S''(x) at x_i , $i=2,3, \ldots n-1$, can be expressed as a linear equation involving $S'(x_{i-1})$, $S'(x_i)$ and $S'(x_{i+1})$. Similarly the continuity of S''(x) at x_1 can be expressed as a linear equation involving $S'(x_{n-1})$, $S'(x_1)$ and $S'(x_2)$. Thus the unknown derivatives $S'(x_i)$, $i=1,2, \ldots n-1$, satisfy a set of n-1 linear equations whose matrix is tridiagonal except for entries in positions (1,n-1) and (n-1,1). This set of equations is set up and solved by Gaussian elimination. No interchanges are needed because the matrix is diagonally dominant.

5 EXAMPLE OF USE

As a very simple example the following code finds a periodic cubic spline that interpolates the function values for the given data.

```
DOUBLE PRECISION X(9), F(9), D(9), W(27)
     DATA X/0.0000D0,2.0000D0,4.0000D0,6.0000D0,8.0000D0,
             1.0000D1,1.2000D1,1.4000D1,1.6000D1/
      DATA F/0.0000D0,1.0000D0,2.0000D0,4.0000D0,5.0000D0,
             4.0000D0,3.0000D0,2.0000D0,0.0000D0/
      DATA N/9/
      DATA LP/6/
      CALL TB05AD(N,X,F,D,W,LP)
      WRITE(6,10)
      FORMAT(10X, ' X(I)', 10X, ' F(I)', 10X, ' D(I)')
10
      WRITE(6,20)(X(I),F(I),D(I),I=1,N)
20
      FORMAT(/(3F16.4))
      STOP
      END
```

This produces the following output

X(I)	F(I)	D(I)
0.0000	0.0000	-0.2946
2.0000	1.0000	0.6429
4.0000	2.0000	0.7232
6.0000	4.0000	0.9643
8.0000	5.0000	-0.0804
10.0000	4.0000	-0.6429
12.0000	3.0000	-0.3482
14.0000	2.0000	-0.9643
16.0000	0.0000	-0.2946