## 1 SUMMARY

Evaluates a spline $S(x)$ of degree $k-1$ and its derivatives using the B-spline representation of $S(x)$. Specifically, given knots and coefficients $a_{1}, \ldots, a_{m+k}$ in the representation

$$
S(x)=\sum_{i=1}^{m+k} a_{i} N_{k, i}(x), \quad m \geq 0, \quad k \geq 1,
$$

this subroutine computes the values of

$$
\frac{d^{j-1}}{d x^{j-1}} S(x), \quad j=1,2, \ldots, r, \quad r \leq k
$$

at a specified point $x$.
The method is based on De Boor, 'On Calculating with B-splines', J. App. Theory, 6, (1972).
ATTRIBUTES - Version: 1.0.0. Types: TG03A, TG03AD. Original date: January 1977. Origin: P.W.Gaffney, Harwell.

## 2 HOW TO USE THE PACKAGE

### 2.1 The argument lists

The single precision version:
CALL TG03A (K, MPK, A, T, MP 2K, WK, IW, XVALUE, ID, S)

## The double precision version:

CALL TG03AD (K, MPK, A, T, MP 2K, WK, IW, XVALUE, ID, S)
K is an INTEGER variable which must be set by the user to the order, $k$, of the spline $S(x)$. The value of $k$ must be greater than or equal to 1 . This argument is not altered by the subroutine.

MPK is an INTEGER variable which must be set by the user to the number, $m+k$, of coefficients $a_{i}, i=1,2, \ldots, m+k$. The value of $m+k$ must be greater than or equal to $k$. This argument is not altered by the subroutine.

A is a REAL (DOUBLE PRECISION in the D version) array of length at least $m+k$, which must be set by the user to the values of the coefficients $a_{1}, \ldots, a_{m+k}$. This argument is not altered by the subroutine.
T is a REAL (DOUBLE PRECISION in the D version) array of length at least $m+2 k$. On entry to the subroutine $T$ must contain the $m+2 k$ knots $t_{i}, i=1, \ldots, m+2 k$, which are required in order to write $S(x)$ as a linear combination of $m+k$ B-splines (see section 3). The knots $t_{i}$ must be in ascending order, $t_{1} \leq t_{2} \leq \ldots \leq t_{m+2 k}$ and they must also satisfy the inequalities $t_{i}<t_{i+k} i=1, \ldots, m+k$. This argument is not altered by the subroutine.
MP 2 K is an INTEGER variable which must be set by the user to the length of the array T. This argument is not altered by the subroutine.

WK is a REAL (DOUBLE PRECISION in the D version) array of length at least $2 k$, which is used as workspace.
IW is an INTEGER variable which must be set by the user to the length of the array WK. This argument is not altered by the subroutine.
XVALUE is a REAL (DOUBLE PRECISION in the D version) variable which must be set by the user to the value of the argument $x$ at which $S(x)$ and its derivatives are to be computed. This argument is not altered by the subroutine.
ID is an INTEGER variable which must be set by the user. The subroutine computes the values $d^{j-1} S(x) / d x^{j-1}$,

```
\(j=1, \ldots, r\) where \(r=\max [1, \min (\operatorname{ID}, k)]\).
```

$S \quad$ is a REAL (DOUBLE PRECISION in the D version) array of length at least ID. On exit from the subroutine $\mathrm{S}(\mathrm{j})$ contains the values of $d^{j-1} S(x) / d x^{j-1}, j=1, \ldots, r$ where $r=\max [1, \min (\operatorname{ID}, k)]$.

### 2.2 Checks on the input parameters

The restrictions imposed on the values of $K$ and MPK are checked by the subroutine. If these restrictions are not satisfied an error diagnostic is printed, an error return flag, IFAIL, is set (see section 2.3), and a return is made to the calling program.

### 2.3 The common area and diagnostic messages

The subroutine uses a common area which the user may also reference. To do this the calling program will require a COMMON statement of the form:

The single precision version:
COMMON/TG03B/ LP,IFAIL
The double precision version:
COMMON/TG03BD/ LP,IFAIL
LP is an INTEGER variable which is defaulted to the value 6 . All error messages appear on the unit number whose value appears in LP ( $\mathrm{LP} \geq 1$ ). The user may suppress the printing by setting $\mathrm{LP}=0$.
IFAIL is an INTEGER variable which is set to an error return flag. On exit from the subroutine it has one of the following values:

0 successful entry,
$1 \mathrm{~K}<1$,
$2 \mathrm{MPK}<\mathrm{K}$.

### 2.4 Motivation

If $S(x)$ is a spline of degree $k-1$ with $m$ given knots, $\eta_{i}, i=1, \ldots, m$, where $-\infty<\eta_{1} \leq \eta_{2} \leq \ldots \leq \eta_{m}<\infty$, then $S(x)$ has $m+k$ linear parameters. Therefore, it can be expressed as a linear combination of $m+k$ linearly independent normalised B-splines of degree $k-1$. In order to do this it is necessary to introduce an additional $2 k$ knots $t_{j}$, $j=1, \ldots, k, m+k+1, \ldots, m+2 k$ such that

$$
\begin{equation*}
t_{1} \leq t_{2} \leq \ldots \leq t_{k}<\eta_{1} \tag{2.4.1}
\end{equation*}
$$

and

$$
\begin{equation*}
\eta_{m}<t_{m+k+1} \leq t_{m+k+2} \leq \ldots \leq t_{m+2 k} \tag{2.4.2}
\end{equation*}
$$

Intermediate values of $t_{j}$ are defined by the equations

$$
\begin{equation*}
t_{k+j}=\eta_{j}, \quad j=1, \ldots, m \tag{2.4.3}
\end{equation*}
$$

Then, for $x$ in the range $t_{k} \leq x \leq t_{m+k+1}, S(x)$ can be expressed in the form

$$
\begin{equation*}
S(x)=\sum_{i=1}^{m+k} a_{i} N_{k, i}(x) \tag{2.4.4}
\end{equation*}
$$

where the function $N_{k, i}(x)$ is the normalised B-spline of degree $k-1$ with knots at $t_{i}, \ldots, t_{i+k}$. The purpose of this subroutine is to compute the derivatives $d^{j-1} S(x) / d x^{j-1}, 1 \leq j \leq k$, at a given point $x$. If $x<t_{k}$ or $x>t_{m+k+1}$ then these derivatives are set to zero.

In order to use the subroutine the user must supply the complete set of knots $t_{i}, i=1, \ldots m+2 k$, and also the coefficients $a_{1}, \ldots, a_{m+k}$ in expression (2.4.4).

## 3 GENERAL INFORMATION

Use of common: The subroutine uses a common area TG03B/BD (see § 2.3).
Workspace: The user provides a workspace array wK of size at least $2 k$.
Other routines called directly: None.
Input/output: Diagnostic printing is given on stream number LP, and may be suppressed, see §2.3.
Restrictions: $\quad k \geq 1, \quad m+k \geq k, \quad t_{1} \leq t_{2} \leq \ldots \leq t_{m+2 k}, \quad t_{i}<t_{i+k}, i=1, \ldots, m+k$.

## 4 METHOD

To compute the derivatives

$$
\begin{equation*}
S^{(j-1)}(x) \equiv \frac{d^{j-1}}{d x^{j-1}} \sum_{i=1}^{m+k} a_{i} N_{k, i}(x), \quad 1 \leq j \leq k . \tag{4.1}
\end{equation*}
$$

for a value of $x$ in the range $t_{k} \leq x \leq t_{k+m+1}$ we use the formula of De Boor (1972)

$$
\begin{equation*}
S^{(j-1)}(x)=\sum_{i=J \text { INT }-k+j}^{\text {JINT }} a_{i, j} N_{k-j+1}(x) \tag{4.2}
\end{equation*}
$$

where the constants $a_{i, j}$ are calculated from the recurrence relation

$$
\begin{equation*}
a_{i, j}=(k-j+1)\left(\frac{a_{i, j-1}-a_{i-1, j-1}}{t_{i+k-j+1}-t_{i}}\right), \quad j \geq 2 \tag{4.3}
\end{equation*}
$$

starting with

$$
\begin{equation*}
a_{i, 1}=a_{i} \tag{5.4}
\end{equation*}
$$

The integer JINT, in formula (4.2), is defined by the inequalities

$$
\begin{equation*}
t_{\mathrm{JINT}} \leq x \leq t_{\mathrm{JINT}+1} . \tag{5.5}
\end{equation*}
$$

## Reference

De Boor, C. (1972). "On Calculating with B-splines". J. App. Theory, 6, 50-62.

## 5 EXAMPLE OF USE

We present an example of a situation where TG03A may be used. Suppose we are given values $f_{1}, \ldots, f_{n}$ of a function $f(x)$ at $n$ distinct points $x_{1}<x_{2}<\ldots<x_{n}$, and we wish to approximate $f(x)$ by a quadratic spline $S(x)$, which has $m$ knots $\eta_{1} \leq \eta_{2} \leq \ldots \leq \eta_{m}$ in the open interval ( $x_{1}, x_{n}$ ), and which passes through the values $f_{1}, \ldots, f_{n}$. Furthermore, suppose that the eventual aim of the approximation is to tabulate $S(x)$ and its derivative $S^{\prime}(x)$. Then, in order to obtain a unique spline of degree 2 which interpolates $n$ arbitrarily prescribed values, $f_{1}, \ldots, f_{n}$, the value of $m$ must be $n-3$. Moreover, the knots $\eta_{i}, i=1, \ldots, n-3$ must satisfy the inequalities $x_{i}<\eta_{i}<x_{i+3}, i=1, \ldots, n-3$. Under these conditions the spline $S(x)$ may be written in the form

$$
S(x)=\sum_{i=1}^{n} a_{i} N_{3, i}(x),
$$

where the constants $a_{1}, \ldots, a_{n}$ are determined uniquely from the conditions

$$
S\left(x_{j}\right)=\sum_{i=1}^{n} a_{i} N_{3, i}\left(x_{j}\right)=f_{j}, \quad j=1, \ldots, n
$$

Once a suitable set of knots $\eta_{i}, i=1, \ldots n-3$ has been chosen the values of $a_{1}, \ldots, a_{n}$ may be computed by using
subroutine TB06A. In order to tabulate $S(x)$ and $S^{\prime}(x)$ at values of the argument $x$ we may use subroutine TG03A. The complete set of knots $t_{i}, i=1, \ldots, n+3$ (see $\S 2.4$ ), are provided by TB06A in positions $W K(1), \ldots, \mathrm{WK}(\mathrm{n}+3)$ of the workspace array WK.

The Fortran code which is required to obtain $S(x)$, and then tabulate $S(x)$ and $S^{\prime}(x)$ might be as follows.

```
REAL X(100)
REAL SX(1000),SIX(1000)
REAL A(100)
REAL ETA(97)
REAL S(2)
REAL AN (100,3),WK (209)
INTEGER IL(100)
READ (5,100) N
READ (5,200) X,F
K=3
NM3=N-K
READ (5,300) ETA
ISW=2*N+3*K
Data points }\mp@subsup{x}{i}{},i=1,\ldots,n(n\leq100)
Arrays for tabulated values.
Coefficients }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{}\mathrm{ .
Knots }\mp@subsup{\eta}{i}{},i=1,\ldots,n-3
Array for derivatives.
Workspace.
Integer work space.
Get }n\mathrm{ the number of data points.
Input data points and function values }\mp@subsup{x}{i}{},\mp@subsup{f}{i}{},i=1,\ldots,n
set order, k, of spline S(x).
Set number of knots.
Input the knots }\mp@subsup{\eta}{i}{},i=1,\ldots,n-3
Dimension of workspace WK.
Compute coefficients }\mp@subsup{a}{1}{},\ldots,\mp@subsup{a}{n}{}\mathrm{ .
CALL TB06A(N,X,F,K,NM3,ETA,IL,AN,ISW,WK,A)
H=(X (N) -X (1))/999.0 Increment for tabulation points.
ID=2 Set for calculating S(x) and dS(x)/dx.
MP2K=N+K Total number of knots }\mp@subsup{t}{i}{}\mathrm{ .
MP2KP1=MP2K+1 Set for workspace.
IW=2*K Set for workspace.
Tabulate S(x) and S S'(x) at the points }\mp@subsup{x}{i}{}=\mp@subsup{x}{i}{}+(i-1)hi=1,\ldots,1000 where h=(\mp@subsup{x}{n}{}-\mp@subsup{x}{1}{})/999
    DO 10 I=1,1000
        XVALUE=X (1) +FLOAT (I-1)*H
        CALL TG03A(K,NM3,A,WK (1),MP2K,WK (MP2KP1),IW,XVALUE,ID,S)
        SX(I)=S(1)\quadStore the results in
        SIX(I)=S(2) SX and SIX.
1 0 \text { CONTINUE}
    STOP
    END
```

