1 SUMMARY

If $y_{1}, y_{2}, \ldots, y_{n}$ are a set of observations of a function $f\left(x, v_{1}, v_{2}, \ldots, v_{m}\right)$ at discrete values $x_{1}, x_{2}, \ldots, x_{n}$, then VB01A finds the value of \mathbf{v} which minimizes

$$
\mathbf{S}=\sum_{i=1}^{n} w_{i}\left(y_{i}-f\left(x_{i}, \mathbf{v}\right)\right)^{2}
$$

where $w_{1}, w_{2}, \ldots, w_{n}$ are weights provided by the user. The method used is a modified Marquardt routine (see R. Fletcher, 'A modified Marquardt subroutine for nonlinear least squares', AERE-R 6799, 1971).

The user must provide initial estimates of the parameters $v_{j} j=1,2, \ldots, m$ and a subroutine to calculate values of the functions $f(x, \mathbf{v})$ and its derivatives with respect to the parameters $\partial f / \partial v_{j}, j=1,2, \ldots, m$.

The routine returns to the calling program
(1) The final values of the v_{i}.
(2) The standard deviations of the v_{i}.
(3) The variance covariance matrix.
(4) The fitted values $f\left(x_{i}, \mathbf{v}\right)$.

It also prints out a history of the iterative process and full details of the solution and its statistical properties, including standard deviations and a chi-squared test on the variance ratio.
ATTRIBUTES - Version: 1.0.0. Types: VB01A, VB01AD. Calls: MA10, _DOT, OA01, SA01 and DERIV (a user subroutine). Original date: June 1972. Origin: R. Fletcher, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version

CALL VB01A (X,Y,W,Z,N,V,E,M,A,IA,MAXFN)

The double precision version

```
CALL VB01AD (X,Y,W,Z,N,V,E,M,A,IA,MAXFN)
```

X is a REAL (DOUBLE PRECISION in the D version) array of n elements to be set by the user to the data points $x_{1}, x_{2}, \ldots, x_{n}$.

Y is a REAL (DOUBLE PRECISION in the D version) array of n elements to be set by the user to the observations $y_{1}, y_{2}, \ldots, y_{n}$
W is a REAL (DOUBLE PRECISION in the D version) array of n elements to be set by the user to the weights $w_{1}, w_{2}, \ldots, w_{n}$.
$\mathrm{Z} \quad$ is a REAL (DOUBLE PRECISION in the D version) array of n elements in which the fitted estimates $f\left(x_{i}, \mathbf{v}\right)$ $i=1,2, \ldots, n$ are returned.
$\mathrm{N} \quad$ is an INTEGER to be set to n the number of observations.
V is a REAL (DOUBLE PRECISION in the D version) array of m elements or more in which an initial estimate of $v_{1}, v_{2}, \ldots, v_{m}$ must be set. The optimum value of \mathbf{v} is returned on exit. In addition, $\mathrm{V}(\mathrm{M}+1), \mathrm{V}(\mathrm{M}+2), \ldots$ may be used to communicate constants between the calling routine and the user subroutine DERIV.

E is a REAL (DOUBLE PRECISION in the D version) array of m elements in which the standard deviations of the v_{i} are returned on exit.

M is an INTEGER to be set to m the number of variables; $2 \leq m \leq 25$.
A is a REAL (DOUBLE PRECISION in the D version) array of two dimensions, at least m^{2}, in which the variance-covariance matrix is returned on exit.

IA is an INTEGER set to the first dimension of A, i.e. the dimension statement in the calling program will have the form $A(I A$,$) .$

MAXFN is an INTEGER set to the maximum number of times which the sum of squares can be evaluated.

3 THE USER SUBROUTINE

The user must provide a subroutine headed

```
SUBROUTINE DERIV(X,V,F,FUNC,IFL)
REAL F(*),V(*)
```

which is passed a value x in X (one of the x_{i}) and a vector \mathbf{v} in V . The subroutine should calculate the value of $f\left(x, v_{1}, v_{2}, \ldots, v_{m}\right)$ and return it in FUNC and calculate the values $\partial f / \partial v_{i} i=1,2, \ldots, m$ and return them in F (I) $=\mathrm{I}=1, \mathrm{M}$. If the vector \mathbf{v} is unsatisfactory in any way (for instance $V(I)$ may be negative when it is known to be positive from physical considerations) then IFL should be set equal to 1 and a RETURN made without setting FUNC or F. Finally constants may be communicated to DERIV from the calling routine by using $\mathrm{V}(\mathrm{M}+1), \mathrm{V}(\mathrm{M}+2), \ldots$.

4 PRINTING

Printing occurs on stream 6 (line printer) although this can be changed (to stream 8 say) by including the statements

```
COMMON/VB01B/IP
IP=8
```

in the calling program. The print out commences with a history of each iteration of the iterative process given in the form

```
iteration number number of evaluations of S
S
V(1),V(2),...,V(M) (8 to a line)
G(1),G(2),\ldots,G(M) (8 to a line)
```

where $2 * G(I)$ is the derivative $\partial S / \partial V(I)$. The fact that $G(I) \rightarrow 0$ for all I is an indication that the iteration has converged. Once the iteration has converged (the criterion being that the change in each $V(I)$ is less than one tenth of its standard deviation) then the following information is printed out: the optimum $V(I)$ and their standard deviations, the variance covariance matrix, the values x_{i}, y_{i} and $f\left(x_{i}, \mathbf{v}\right)$ for each i, and finally the weighted sum of squares S , the number of degrees of freedom $\mathrm{N}-\mathrm{M}$, the variance ratio, and the probability of chance occurrence of a variance ratio as least as large as that obtained.

5. GENERAL

Use of common: A COMMON area named VB01B/BD is used. This need only be referenced if the user requires the output from VB01A/AD to be written on an output stream other than stream 6, see section 4 .

Workspace: 800 words local to VB01A/AD.
Input/output: no input, for output see section 4.
Restrictions: $2 \leq m \leq 25$.

