1 SUMMARY

VC04 fits a straight line to data by the least squares method.
The subroutine takes data values $x_{i}, y_{i}, i=1,2, \ldots, m(m \geq 2)$ and optionally weights $w_{i}, i=1,2, \ldots, m$, and finds the line $y=a+b x$ where the parameters a and b are such that

$$
\sum_{i=1}^{m} w_{i}\left\{y_{i}-\left(a+b x_{i}\right)\right\}^{2}
$$

is minimised.
The weights may be omitted (which is as if $w_{i}=1, i=1,2, \ldots, m$). There are options for obtaining information relevant to the problem of fitting x as a function of y, i.e. $x(y)=p+q y$, and information is also available for the general analysis of the correlation problem.
ATTRIBUTES - Version: 1.0.0. Types: VC04A, VC04AD. Calls: FD05, OA03. Original date: August 1985. Origin: J.Ledger, Harwell.

2 HOW TO USE THE PACKAGE

2.1 Argument list

To fit a straight line to data using no weights and returning only the parameter values:
The single precision version
CALL VC04A (X, Y, M, A, B, IPRINT)
The double precision version
CALL VC04AD (X, Y, M, A, B, IPRINT)
To fit a straight line to data using weights and returning only parameter values:
The single precision version
CALL VCO4B (X,Y,W,M,A,B,IPRINT)
The double precision version
CALL VCO4BD (X,Y,W,M,A,B,IPRINT)
To fit a straight line using weights and returning, in addition to the parameter values, their standard deviations, the residual standard deviation and the correlation coefficient:
The single precision version
CALL VCO4C (X,Y,W,M,PAR,RHSTD,CORR,IPRINT)
The double precision version
CALL VC04CD (X,Y,W,M,PAR,RHSTD, CORR, IPRINT)
X, Y are REAL (DOUBLE PRECISION in the D version) arrays which the user must set to the data values $x_{i}, y_{i}, i=1$, $2, \ldots, m$.

W is a REAL (DOUBLE PRECISION in the D version) array which must be set by the user to the weights $w_{i} i=1,2, \ldots$, m on a call to VC04B/BD or VC04C/CD. Restriction: W(I) $\geq 0, I=1,2, \ldots, M$.
is an INTEGER set by the user to the number, m, of data points. Restriction: $M \geq 2$.
A, B are REAL (DOUBLE PRECISION in the D version) variables which are set to the values of the parameters a and b defining the fitted straight line $y=a+b x$ on a call to VC04A/AD or VC04B/BD .

PAR is a REAL (DOUBLE PRECISION in the D version) array of length at least 4 which need not be set by the user. On return from VC0 $4 \mathrm{C} / \mathrm{CD}$ it will contain the parameters a and b defining the fitted straight line $y=a x+b$, and their estimated standard deviations, i.e. $\operatorname{PAR}(1)=a, \operatorname{PAR}(2)=b, \operatorname{PAR}(3)=s(a), \operatorname{PAR}(4)=s(b)$.

RHSTD is a REAL (DOUBLE PRECISION in the D version) variable which need not be set by the user. On return from $\mathrm{VC} 04 \mathrm{C} / \mathrm{CD}$, contains an estimate of the residual standard deviation (see section 4).

CORR is a REAL (DOUBLE PRECISION in the D version) variable which need not be set by the user. On return from $\mathrm{VC} 04 \mathrm{C} / \mathrm{CD}$, it contains an estimate of the coefficient of correlation (see section 4).

IPRINT is an INTEGER variable which must be set by the user to specify one of the following print options:
if IPRINT $=0$, no printing is done,
if IABS $(\operatorname{IPRINT})=1$, the parameters a and b, their estimated standard deviations, the residual standard deviation and the correlation coefficient are printed,
if IABS $($ IPRINT $)=2$, the corresponding details for the fit $x=p+q y$ and the means and variances of the data are also printed,
if IPRINT <0, a table of the data points, and weights if appropriate, is also printed.

2.2 Common

In the single precision version:

```
COMMON/VC0 4D/LP ,NDF,CCORR,AA, BB, ASTD, BSTD,ABCOV, RSTD,P, Q,
* PSTD,QSTD,PQCOV,RHOSTD, XBAR,YBAR, S2XX,S2YY, S2XY
    COMMON/VCO4H/IERR
```

In the double precision version:

```
COMMON/VCO4DD/LP , NDF , CCORR, AA, BB, ASTD, BSTD,ABCOV, RSTD, P, Q,
* PSTD,QSTD,PQCOV,RHOSTD,XBAR,YBAR,S2XX,S2YY,S2XY
COMMON/VC04HD / IERR
```

LP is an INTEGER variable, with default value 6, set by BLOCK DATA VC04G/GD, which holds the stream number for printing. This may be reset by the user before calling the subroutine.

NDF is an INTEGER variable which is set by the subroutine to the number of degrees of freedom (in fact this will always be $m-2$).

CCORR is a REAL (DOUBLE PRECISION in the D version) variable set by the subroutine to the coefficient of correlation.

IERR is an INTEGER variable which specifies one of the following error conditions:
if $\operatorname{IERR}=0$, no errors,
if IERR >0, a weight is negative,
if $\operatorname{IERR}=-1$, the weights sum to zero,
if $\operatorname{IERR}=-2$, there is an insufficient number of points,
if $\operatorname{IERR}=-3$, the variance of x is zero,
if $\operatorname{IERR}=-4$, the variance of y is zero and $y=a$.

Regression $y=a+b x$

AA, BB are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the parameters a and b. ASTD, BSTD, ABCOV are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the standard deviations of a and b and to the covar $(a b)$ respectively.

RSTD is a REAL (DOUBLE PRECISION in the D version) variable set by the subroutine to the residual standard deviation.

Regression $x=p+q y$

P, Q are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the parameters p and q.
PSTD, QSTD, PQCOV are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the standard deviations of p and q and to the $\operatorname{covar}(p q)$ respectively.
RHOSTD is a REAL (DOUBLE PRECISION in the D version) variable set by the subroutine to the residual standard deviation.

Data statistics

XBAR, YBAR are REAL (DOUBLE PRECISION in the D version) variables set by the subroutine to the data means \bar{x} and \bar{y}.
S2XX, S2YY, S2XY are REAL variables set by the subroutine to the variances $s_{x x}^{2}$ and $s_{y y}^{2}$ and the covariance $s_{x y}^{2}$, see section 4.

3 GENERAL INFORMATION

Use of common: VC04D/DD, BLOCK DATA VC04G/GD, VCO4H/HD.
Other routines called directly: FD05, _DOT, _AMAX, OA $03 \mathrm{~A} / \mathrm{AD}$ are called.
Input/output: Output is under the control of arguments IPRINT and LP.
Restrictions: $\quad m \geq 2$ and $w_{i} \geq 0, i=1,2, \ldots, m$.

4 METHOD

The subroutine uses the following formulae:

$$
\begin{array}{ll}
\bar{w}=\sum_{i=1}^{m} w_{i} & s_{x x}^{2}=\frac{m}{m-1} \sum_{i=1}^{m} \frac{w_{i}\left(x_{i}-\bar{x}\right)^{2}}{\bar{w}} \\
\bar{x}=\sum_{i=1}^{m} \frac{w_{i} x_{i}}{\bar{w}} & s_{y y}^{2}=\frac{m}{m-1} \sum_{i=1}^{m} \frac{w_{i}\left(y_{i}-\bar{y}\right)^{2}}{\bar{w}} \\
\bar{y}=\sum_{i=1}^{m} \frac{w_{i} y_{i}}{\bar{w}} & s_{x y}^{2}=\frac{m}{m-1} \sum_{i=1}^{m} \frac{w_{i}\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\bar{w}}
\end{array}
$$

The regression parameters are calculated simply by:

$$
b=s_{x y}^{2} / s_{x x}^{2}, \quad a=\bar{y}-b \bar{x} \quad \text { and } \quad q=s_{x y}^{2} / s_{y y}^{2}, \quad p=\bar{x}-q \bar{y}
$$

The coefficient of correlation is

$$
r=\sqrt{b q}
$$

Estimates of the weighted residual variances are

$$
s_{a b}^{2}=\frac{1}{m-2} \sum_{i=1}^{m} w_{i}\left\{y_{i}-\left(a+b x_{i}\right)\right\}^{2} \text { and } s_{p q}^{2}=\frac{1}{m-2} \sum_{i=1}^{m} w_{i}\left\{y_{i}-\left(p+q x_{i}\right)\right\}^{2}
$$

The estimates of the parameter standard deviations are obtained from the variances

$$
\begin{aligned}
& \operatorname{var}(b)=\frac{m-1}{m} \frac{s_{a b}^{2}}{\bar{w} s_{x x}^{2}}, \operatorname{var}(a)=\operatorname{var}(b)\left\{\frac{m-1}{m} s_{x x}^{2}+\bar{x}^{2}\right\} \\
& \operatorname{var}(q)=\frac{m-1}{m} \frac{s_{p q}^{2}}{\bar{w} s_{y y}^{2}}, \quad \operatorname{var}(p)=\operatorname{var}(q)\left\{\frac{m-1}{m} s_{y y}^{2}+\bar{y}^{2}\right\}
\end{aligned}
$$

The covariances are
$\operatorname{covar}(a b)=-\bar{x} \operatorname{var}(\mathrm{~b}), \quad \operatorname{covar}(p q)=-\bar{y} \operatorname{var}(\mathrm{q})$.

5 EXAMPLE OF USE

The use of the subroutine can be illustrated by the following test program:

```
C
C TEST FOR VC04 USING THREE DATA POINTS
C
C
    DIMENSION X(10),Y(10)
    DOUBLE PRECISION AA,BB,X,Y
    DOUBLE PRECISION XX
    COMMON/VCO4DD/LP,NDF, XX (18)
    LP=9
C
C
M EQUALS THE NUMBER OF DATA POINTS
M=3
X(1)=1.1
X(2)=1.9
X(3)=3.05
Y(1)=0.9
Y(2)=1.95
Y(3)=2.99
IPRINT=1
CALL VC04AD (X,Y,M,AA,BB,IPRINT)
STOP
END
```

This produces the following output

```
VCO4AD: STRAIGHT LINE FIT.
    DEG. FREEDOM 1; CORRELATION COEFF. 0.994385
VC04AD: REGRESSION Y = A + B*X.
    A= -1.9120988725065002D-01 B= 1.0601040763226364D+00
    RES.S.T.D.= 1.563905D-01
    STD (A)= 2.447746D-01 STD (B)= 1.128161D-01
    COVAR (AB) = -2.566709D-02
```

