1 SUMMARY

To find the weighted least squares fit to N given data points $\left(x_{i}, y_{i}\right)$ by a polynomial of degree $M, M<N$. The polynomial, $P_{M}(x)$, is chosen so that

$$
\sum_{i=1}^{N} w_{i}\left[y_{i}-P_{M}\left(x_{i}\right)\right]^{2}
$$

is minimized, where $w_{i}, i=1,2, \ldots, N$ are the weights.
The polynomial $P_{M}(x)$ is defined as a linear combination of orthogonal polynomials $Q_{K}(x), K=0,1, \ldots, M$,

$$
P_{M}(x)=\sum_{K=0}^{M} C_{K} Q_{K}(x)
$$

where the $Q_{K}(x)$ are defined by the recurrence relations

$$
\begin{aligned}
& Q_{K}(x)=\left(x-a_{K}\right) Q_{K-1}(x)-b_{K} Q_{K-2}(x), \quad K=2,3, \ldots, M, \\
& Q_{0}(x)=1, \\
& Q_{1}(x)=x-a_{1}
\end{aligned}
$$

and $a_{K}, b_{K}, K=1,2, \ldots, M$ are determined by the subroutine from the orthogonality relations

$$
\sum_{i=1}^{N} w_{i} Q_{K}\left(x_{i}\right) Q_{J}\left(x_{i}\right)=0 \quad J \neq K
$$

ATTRIBUTES - Version: 1.0.0. Types: VC11A; VC11AD. Calls: None. Original date: February 1993. Origin: E.J. York, Harwell, modified by M.J. Hopper, Rutherford Appleton Laboratory. Remark: This is a rewritten version of VC01A.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version:
CALL VC11A (X, Y, W, Z, N, A, B, C, G, H, L, M, U, LP)
The double precision version:
CALL VC11AD (X,Y,W, Z, N, A, B, C, G, H, L, M, U, LP)
$\mathrm{X} \quad$ is a REAL (DOUBLE PRECISION in the D version) array, minimum length N, containing the data positions x_{i} as in section 1 , such that

$$
X(J)=x_{J,}, J=1,2, \ldots, N
$$

Y is a REAL (DOUBLE PRECISION in the D version) array, minimum length N, containing the data values y_{i} as in section 1.
W is a REAL (DOUBLE PRECISION in the D version) array, minimum length N, containing the weights w_{i} as in section 1.

Z is a REAL (DOUBLE PRECISION in the D version) array of length N set to the values

$$
\sum_{J=0}^{M} C_{J} Q_{J}\left(x_{i}\right) .
$$

N is an INTEGER, the number of data points.
A is a REAL (DOUBLE PRECISION in the D version) array of length $M+1$ containing the parameters a_{K} in the recurrence relations.

B is a REAL (DOUBLE PRECISION in the D version) array of length $M+1$ containing the parameters b_{K} in the recurrence relations.

C is a REAL (DOUBLE PRECISION in the D version) array of length $M+1$ containing the coefficients c_{K}, so that $C(K)=c_{K-1}, K=1,2, \ldots, M+1$.

G is a REAL (DOUBLE PRECISION in the D version) array of length $M+1$ set so that $G(I)$ is the variance of C (I) .
H is a REAL (DOUBLE PRECISION in the D version) array of length $M+1$ set to the residual sum of squares, as follows

$$
H(I)=\sum_{J=1}^{N} W(J)\left[Y(J)-\sum_{K=1}^{I} C(K) Q_{K-1}(X(J))\right]^{2} .
$$

L is an INTEGER array of length $M+1$ such that L (I) contains the number of changes of sign in the residuals when the fitting function is

$$
\sum_{K=1}^{I} C(K) Q_{K-1}(x)
$$

M is an INTEGER, the degree of the polynomial to be fitted.
$\mathrm{U} \quad$ is a REAL (DOUBLE PRECISION in the D version) array of length $2 N$ and is used by VC11A/VC11AD as working space.

LP is an INTEGER variable which specifies the stream number on which results appear: to suppress these messages set LP negative or zero.

3 GENERAL INFORMATION

Use of common: Makes no use of common areas.
Workspace: Passed through the argument list (see definition of U above).
Other routines called directly: None.
Input/output: Results may be printed (see definition of LP above).
Restrictions: $m<N, m \leq 19$.

4 METHOD

See G.E. Forsythe, Generation and use of orthogonal polynomials for data fitting, Journal of SIAM, 5, pp.74-78 (1957).

Note that the library subroutines PE07A/AD can be used to compute values of $P_{M}(x)$ and the routines PE08A/AD can be used to obtain the coefficients $d_{K}, K=0,1, \ldots, M$ in the power series expansion

$$
P_{M}(x)=\sum_{K=0}^{M} d_{K} x^{K} .
$$

