
VE01
PACKAGE SPECIFICATION HSL ARCHIVE

1 SUMMARY

To minimize a function, f(x , x , ..., x), of n independent variables, x , x , ..., x , subject to m linear inequality1 2 n 1 2 n

constraints

n

c x ≥ d i = 1, 2, ..., m∑ ij j i
j=1

See section 8 for an example.

The user must supply a subroutine to calculate values of both the function f and the gradient vector
∂f

g = j=1,2,...,n.j ∂x j

The method used requires an initial approximation to the minimum position to be provided. The accuracy required
and a lower bound for f must also be specified.

Notes are given in section 6 on the use of the routine in parametric programming problems where in such cases it is
required to vary the definition of f or vary the constraint constants.

If the function is quadratic in the variables then use of this routine is inefficient. The user is referred to the routine
VE02A.

ATTRIBUTES — Version: 1.0.0. Types: VE01A, VE01AD Calls: FD05, SDOT/DDOT and FUNCT (a user subroutine).
Original date: December 1969. Origin: R. Fletcher, Harwell.

2 HOW TO USE THE PACKAGE

2.1 The argument list and calling sequence

The single precision version

SUBROUTINE VE01A(N,X,F,G,H,U,EP,FB,M,K,C,IC,
D,LT,CP,ICP,AL,R,MXF,IPR,IEXIT)

The double precision version

SUBROUTINE VE01AD(N,X,F,G,H,U,EP,FB,M,K,C,IC,
D,LT,CP,ICP,AL,R,MXF,IPR,IEXIT)

Arguments set by the user

N is an INTEGER and should be sent to n the number of variables.

X is a REAL array: the first n members should be sent to an initial approximation to the minimum position x j =j

1, 2, ..., n. The initial approximation given must be feasible (i.e. satisfy the constraints) if it does not the
following action is taken: the violated constraints are listed, and computation proceeds on the assumption that
the violations are negligible. (This can happen from entries of the type described in section 6). If the violations
are not negligible then the results will be meaningless. A routine LA02A is available to enable feasible points to
be calculated for this problem.

U is a LOGICAL variable: set U=.TRUE. initially.

EP is a REAL array: the first n members should be set to the absolute accuracy required in the corresponding
members of the solution vector x j = 1, 2, ..., n.j

All use is subject to licence. VE01 v 1.0.0
http://www.hsl.rl.ac.uk/ 1 Documentation date: 8th February 2011

VE01 HSL ARCHIVE

FB is a REAL variable which should be set to a lower bound on the value of the function f. If a value of f less than
FB is detected the routine returns to the caller with IEXIT=5.

M is an INTEGER and should be set to m, the number of constraints.

K is an INTEGER used by the routine to indicate the number of active constraints at the minimum. It should be set
to zero initially.

C is a REAL two dimensional array which should contain the coefficients of the constraint inequalities, i.e. c i =ij

1, 2, ..., m, j = 1, 2, ..., n.

IC is an INTEGER and should be set to the first dimension of the array C (e.g. suppose space is allocated for C by
DIMENSION C(10,4), then IC would be set to 10).

D is a REAL array and the first m members should be set to the constraint right hand sides d i = 1, 2, ..., m.i

MXF is an INTEGER and should be set to an upper limit on the number of evaluations of the function f. If the routine
finds it requires more than MXF evaluations it will return to the caller with IEXIT = 6 and X set to the best
approximation to the minimum obtained so far.

IPR is an INTEGER used to control the printed output. Printing will occur every IPR iterations except when IPR = 0
when no iteration details will be printed.

ICP is an INTEGER giving the first dimension of CP.

Arguments set by the routine

X the first n members of X will be set to the best approximation to the minimum position.

F is a REAL variable and will be set to the value of the function f at the minimum position given in X.

∂f
G is a REAL array of length at least n. The first n members will be set to the vector value of the gradient g = jj ∂x j

= 1, 2, ..., n at the minimum position given in X.

NOTE: F and G are in fact set by the user supplied routine FUNCT.

K will give the number of active constraints (i.e. those constraints for which equality holds at the minimum
position given in X).

LT is an INTEGER array of lengths at least 2m+n. The first K elements will contain a list giving the row numbers of
the active constraints. The remainder of the array is used by the routine as workspace.

AL is a REAL array of length at least n. The first K members will contain the Lagrange multipliers of the active
constraints in the order given by the array LT. These may be used in checking the solution (see section 5).

R is a REAL array. The first m members will contain the constraint residuals at the minimum, i.e.

n

r = c x − d i=1,2,...,m.∑i ij j i
j=1

IEXIT is an INTEGER. On exit from the routine IEXIT is set to an integer value in the range 1 to 6 indicating the
reason for the return to the caller (see section 5 for details).

Other arguments which must be provided

H is a REAL array of length at least –12n(n+11).

CP is a REAL two dimensional array which should be at least n by n.

All use is subject to licence. VE01 v 1.0.0
http://www.hsl.rl.ac.uk/ 2 Documentation date: 8th February 2011

HSL ARCHIVE VE01

3 USER SUPPLIED SUBROUTINE

The user must provide a subroutine

SUBROUTINE FUNCT(N,X,F,G)
DIMENSION X(1),G(1)

......

∂f
statements to evaluate f(x ,x ,...,x) and g = j = 1, 2, ..., n and stored in F and G(J) J = 1,N, given x in X(J)1 2 n j j∂x j

......
RETURN
END

If the programming of F and G is at all complicated the user is strongly advised to check out this routine before using
it with VE01A. It is worth noting that constraints such as x ≥ 0 may not, due to round off errors, preclude negativej

values of x . Hence constructions such as SQRT(X(J)) should be used with care.j

4 GENERAL INFORMATION

Use of common: none.

Workspace: none.

Input/output: on each IPR iterations a block of printing gives:

No. of iterations, No. of calls to FUNCT,K,F

X(1), X(2), ..., X(N),

G(1), G(2), ..., G(N)

LT(1), AL(1), ..., LT(K), AL(K).

On exit additional printing gives the value of IEXIT, and the contents of two vectors which are useful for verifying
the solution (see section 5). Diagnostic printing may occur for the following conditions:

(i) Degeneracy: In certain cases degenerate constraints may cause trouble. If so the value of D(I) for such constraints
is reduced by a small amount to enable the iteration to continue.

(ii) Nonfeasible starting point: Constraints violated by the initial approximation passed to the routine in X are listed.

5 VERIFICATION OF THE SOLUTION

The reason for the exit from VE01A is given in IEXIT in accordance with the following codes:–

∗ ∗(1) normal exit: either |x – x | < ε j = 1, 2, ..., n (where x j = 1, 2, ..., n is the next predicted minimum position andj j j j
∗ ∗ ∗ε is the accuracy requirement given in EP(J)), or f(x , x , ..., x) = f(x , x , ..., x). No exit is taken if the list ofj 1 2 n 1 2 n

active constraints changes.

n ∂f∗(2) (x − x) ≥ 0: not possible without rounding or programming error; probable causes are: accumulation of∑ j j ∂xj=1 j

round-off error, or elements of EP set too small, or G programmed incorrectly.

(3) Irregular behaviour of F and G: probable causes as for 2.

(4) Breakdown of interpolation: probable causes as for 2.

(5) A function value less than the lower bound given in FB detected.

All use is subject to licence. VE01 v 1.0.0
http://www.hsl.rl.ac.uk/ 3 Documentation date: 8th February 2011

VE01 HSL ARCHIVE

(6) FUNCT called MXF times.

The code returned in IEXIT can very occasionally be misleading. The convergence criterion used may result in a
return with IEXIT=1 when the minimum in fact has not yet been found to the accuracy specified. On the other hand
too small a value in the elements of EP may result in a return with IEXIT=2 or 3 although the solution has been
obtained to the best possible accuracy.

It is advisable then to check the solution to allow this to be done easily additional information is printed out on exit.
This follows the printing of LT(1), AL(1), ...,LT(K), AL(K) and comprises of the n elements of a vector η followed
by the m elements of the constraint residual array R.

The vector η = C̄α, where α is the vector of Lagrange multipliers (given in AL) and C̄ is an n by K matrix consisting
of the transpose of the K rows of C corresponding to the active constraints identified in LT. The Lagrange multipliers
satisfy the relation

∂f
C̄α = g (g = given in G(J)).j ∂x j

This enables the following conditions, necessary for a solution, to be checked:

(i) α ≥ 0 j = 1, 2, ..., K (α given in AL(J))j j

f f
(ii) η = ∂ x j = 1, 2, ..., n (∂ x given in G(J))j j j∂ ∂

(iii) R(I) = 0 if Ith constraint active

≥ 0 if Ith constraint not active

The extent of the agreement in the equalities will give an indication of how accurately the solution has been
obtained.

T
One remote cause of failure is that the H matrix (see section 6) goes singular (Hy=0 for y such that C̄ y=0). If

suspected restart from the current approximation with U=.TRUE. and K=0.

6 MORE SOPHISTICATED USE OF VE01A, PARAMETRIC PROGRAMMING

(i)Initial H matrix The array H is used to store an approximation to the inverse hessian matrix of f as rows of its
upper triangle in H(5*N+1) to H(N*(N+11)/2). If such an initial approximation is known, and is positive definite,
then it should be supplied to VE01A with U set to .FALSE. (if U is .TRUE. as is normally the case then VE01A sets H to
the unit matrix).

(ii)Function parametric programming If small changes are made to the parameters which define FUNCT, from a
problem which has already been solved, the information from the previous solution can be used to greatly improve the
time taken to solve the adjusted problem. This information is given in X, H, K, and CP (the generalised inverse matrix
C̄+), which should be passed on unamended. U should be set to .FALSE. on re-entry to VE01A.

(iii)Right hand side parametric programming If small changes are made to D then a new x say x* can be
calculated which satisfies the new constraints. x* is given by

T
x∗ = x − [C̄+] r∗

where r* are the new residuals of the previously active constraints. Statements similar to the following are required:–

DO 1 I=1,K
Z=D(LT(I))
DO 2 J=1,N

2 Z=Z+C(LT(I),J)*X(J)
1 RSTAR(I)=Z

DO 3 I=1,N

All use is subject to licence. VE01 v 1.0.0
http://www.hsl.rl.ac.uk/ 4 Documentation date: 8th February 2011

HSL ARCHIVE VE01

Z=X(I)
DO 4 J=1,K

4 Z=Z-CP(J,I)*RSTAR(J)
3 X(I)=Z

If the new X thus obtained does not violate any previously non-active constraints, then continue as in (ii).
Otherwise proceed as in (iv).

(iv)Constraint parametric programming If small changes are made to C, or if the point determined in (iii) is no
longer feasible, then a new feasible point must be supplied. However, information about the inverse hessian of f
retained in H can be supplied to VE01A, but first the matrix C̄C̄+ must be added to H to replace singular behaviour by
unit matrix like behaviour in the space of the constraint normals. Statements as follows are required:–

KK=5*N+1
DO 1 I=1,N
DO 4 J=I,N
Z=0.
DO 2 JJ=1,K

2 Z=Z+C(LT(JJ),I)*CP(JJ,J)
H(KK)=H(KK)+Z

4 KK=KK+1
1 CONTINUE

Then VE01A can be entered with U =.FALSE. and K=0.

7 METHOD

A generalization of Davidon’s method, based on using an approximation H to the inverse hessian matrix of f, but
enabling linear inequality constraints to be dealt with by projection techniques.

8 EXAMPLE
4Minimize the function f(x ,x ,x)=x exp(x)+(x −x) subject to the conditions x +x +x ≥0, x ≥1. The partial1 2 3 1 2 3 2 1 2 3 1

derivatives ∂f\∂x =g j=1,3will be required. These are –j j

3 3g =exp(x); g =x exp(x)−4(x −x ; g =4(x −x) .1 2 2 1 2 3 2) 3 3 2

The subroutine FUNCT that is required to evaluate f and g j=1,3would be as follows –j

SUBROUTINE FUNCT(N,X,F,G)
DIMENSION X(N),G(N)
G(1)=EXP(X(2))
Q=(X(3)-X(2))**3
F=X(1)*G(1)+(X(3)-X(2))*Q
G(2)=X(1)*G(1)-4.*Q
G(3)=4.*Q
RETURN
END

The space allocation for the arrays could be –

DIMENSION C(2,3),D(2),X(3),EP(3),G(3),LT(9),
AL(3),R(3),H(21),CP(3,3)

All use is subject to licence. VE01 v 1.0.0
http://www.hsl.rl.ac.uk/ 5 Documentation date: 8th February 2011

VE01 HSL ARCHIVE

The input parameters to VE01A could then be –

N=3; X(J)=1. J=1,3; U=.TRUE.; EP(J)=.001 J=1,3; FB=0.; M=2; K=0;
C(1,J)=1.,1.,1.
C(2,J)=1.,0.,0. J=1,3; IC=3; D(I)=0.,0.1 I=1,2; MXF=50; IPR=1;

ICP=3

where we have taken the initial values for x to be 1.,1.,1. and we are asking for an absolute accuracy of .001 in each of
the parameters x. The function f(x) cannot be negative so we set FB to 0.

The final print out from VE01A was:–

EXIT FROM VE01A, IEXIT=2
5 14 2 0.875542E-01

0.999969E-01 -0.159992E 00 0.599926E-01 0.852150E 00 0.426289E-01 0.425834E-01
2 0.809544E 00 1 0.426062E-01

0.852150E 00 0.426062E-01 0.426062E-01
-0.299886E-05 -0.309944E-05

which indicates that there were

5 iterations

14 calls to FUNCT

2 constraints active

and the function value is 0.875542E-01

The second line gives the 3x values followed by the 3 partial derivatives. The third line gives the active constraints,
i.e. constraint No. followed by the Lagrange multiplier for the constraint.

A test for the accuracy of the result is to compare the 3 numbers in the fourth line (η) with the last 3 numbers in the
second line (the partial derivatives). In this example the comparison is good showing that a good result has been
reached despite that IEXIT=2 indicates that a certain amount of round-off error had occurred.

The last line gives the constraint residuals.

All use is subject to licence. VE01 v 1.0.0
http://www.hsl.rl.ac.uk/ 6 Documentation date: 8th February 2011

