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1 SUMMARY

To find X = x ,x ,...,x that minimizes a quadratic function of the form1 2 n

T TQ(x) = –12x Ax − b x

where A = {a } is symmetric matrix, b is a vector and x is subject to bounds l ≤ x ≤ u i=1, 2,..., n.ij n×n i i i

The subroutine calculates the solution x=ξ, the minimum value Q(ξ), and the gradient g(ξ) (note g(x)=Ax−b). This
problem is a special case of quadratic programming for which the subroutine VE02 exists. VE04 is more efficient and
reliable for solving problems of this special form.

The subroutine can be used to solve linear least squares data fitting problems in cases when the variables are
subject to bounds. For this application there is an extra entry point which provides the variance covariance matrix for
the fit.

The method is that of R.Fletcher and M.P.Jackson (1973), AERE TP.528.

ATTRIBUTES — Version: 1.0.0. Types: VE04A; VE04AD. Calls: FD05. Original date: April 1973. Origin:
R.Fletcher, Harwell.

2 HOW TO USE THE PACKAGE

2.1 An application

An application of the subroutine is to weighted linear least squares data fitting subject to bounds. If it is required to
minimize

TS(x) = (Bx−y) W(Bx−y)
Tsubject to the above bounds, where W is an m×m diagonal matrix of weights (w >0, then set A = 2B WD andi,i

Tb = 2B Wy. Statistical calculations for this problem are described in Section 4, including an additional entry point to
enable the variance-covariance matrix to be calculated.

2.2 Argument List

The single precision version

CALL VE04A(N,A,IA,B,BL,BU,X,Q,LT,K,G)

The double precision version

CALL VE04AD(N,A,IA,B,BL,BU,X,Q,LT,K,G)

N is an INTEGER variable which must be set by the user to n the number of variables.

A is a REAL (DOUBLE PRECISION in the D version) two dimensional array, each dimension at least n; the elements
in the upper triangle A(I,J), I ≤ J ≤ N, must be set by the user to the corresponding a in A, and will remainij

untouched by the subroutine. Elements A(I,J), N ≥ I ≥ J, are used as working space.

IA is an INTEGER variable giving the first dimension of A in the statement which assigns space to A.

B is a REAL (DOUBLE PRECISION in the D version) array of at least n elements. The user must set B(i) to the b .i

B is not overwritten by the subroutine.

BL is a REAL (DOUBLE PRECISION in the D version) array of at least n elements. The user must set BL(i) to the
lower bound l on the i-th variable. If the bound is non-existent, set l to a very small number like –|large| (largei i

is a close approximation to the largest finite negative number which may be stored in the machine). BL is not
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overwritten by VE04A/AD.

BU is a REAL (DOUBLE PRECISION in the D version) array of at least N elements. The user must set BU(i) to the
upper bound u on the i-th variable. If the bound is non-existent, set u to a very large number (see large ini i

argument BL). BU is not overwritten by VE04A/AD.

X is a REAL (DOUBLE PRECISION in the D version) array of at least n elements. VE04A/AD returns the solution ξ i

in X(i).

Q is a REAL (DOUBLE PRECISION in the D version) variable in which VE04 returns the value of Q(ξ).

LT is an INTEGER array of at least n elements, set by VE04 to a permutation of the integers 1, 2,..., n (see K and G
below).

K is an INTEGER variable set by VE04A/AD to the number of free variables at the solution ξ (those not on their
bounds). These are the variables LT(1), LT(2),..., LT(K).

G is a REAL (DOUBLE PRECISION in the D version) array of at least 3n elements, G(1), G(2),..., G(N) are set
by VE04A/AD to the gradient g(ξ). G is indirectly addressed so that G(I) contains the gradient with respect to
the LT(I) variable, whence G(1), G(2),..., G(K) will be found to be zero. G(N+1), G(N+2),..., G(3*N)
are used by VE04A/AD as working space.

3 GENERAL INFORMATION

Use of common: None
2Workspace: Approximately –12n words (half of A) + 2n words in G and n integers in LT.

Other routines called directly: FD05.

Input/output: None

Restrictions: None

4 METHOD
That of Fletcher, R. and Jackson, M.P. (1973) ‘Minimization of a quadratic function of many variables subject only

to lower and upper bounds’, TP 528. This method combines generality (any A), efficiency (times comparable to those
Trequired for a factorization of A) and stability (uses partial LDL factorizations).

Statistical Calculations

When a sum of squares is being minimized as in §2.1, the certain statistical quantities can readily be calculated.
TFirstly, of course, S(ξ) is given by Q(ξ)+y Wy. If it is assumed that the bound variables located at VE04A/AD are

exact in the underlying model, then an estimate of the residual variance is given by S(ξ)/(m−k). To estimate variances
and covariances, an additional entry point is provided. This calculates {A} where {A} indicates the submatrix { A }ij

where i and j index only the free variables. The appropriate variance-covariance matrix for the free variables is then
2 −1σ { A} . Estimates of standard deviations of the free variables are given by the square roots of the diagonal element

s of this matrix. Because the bound variables are known exactly, they have zero variance and covariance.
−1The entry point VE04B/BD is essentially written as a separate subroutine. It calculates { A} and is used as follows:

The single precision version

CALL VE04B(N,A,IA,G,K)

The double precision version

CALL VE04BD(N,A,IA,G,K)

N,A,IA,G and K must be passed on unchanged after exit from VE04A/AD. VE04B/BD, sets the following:
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−1A The off diagonal elements of { A} are set in A(I,J) for J < I ≤ K. The elements are indirectly addressed so
−1that A(I,J) contains { A} where r=LT(I) and s=LT(J).r,s

−1G The diagonal elements of { A} are set in G(N+1), G(N+2),..., G(N+K). They are again indirectly
−1addressed so that G(N+1) contains { A} where r=LT(I).r,r

Timing

The time required depends upon how many free variables k there are at the solution. Typical figures for (k/n
3 3 3number of multiplications) are (.1,n /12), (.5,n /6), (.75,n /2).
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