
VE08
PACKAGE SPECIFICATION HSL 2007

1 SUMMARY

To minimize an objective function consisting of a sum of ‘finite element’ functions, each of which involves
only a few variables or whose second derivative matrix has a low rank for other reasons. Bounds on the
variables and known values may be specified. The routine is especially effective on problems involving a large
number of variables.

The objective function has the form
n s

F(x) = f (x ) x = (x , x ,...,x )∑ k k 1 2 n
k=1

where the x are small subsets of x. The user is required to write a subroutine that calculates each function f andk k

(optionally) its gradient

∂f kg = .k ∂x i

When code for the gradient is supplied (and this usually results in faster and more reliable execution), there are
facilities for automatically checking it during the first iteration.

There are flexible re-start facilities for problems that do not differ too substantially from a problem previously
solved. Using these can sometimes lead to dramatically reduced execution times.

If there is a linear transformation of variables such that one or more of the element functions depend on fewer
transformed variables than the number of original variables x they involve, this may be specified. This too can lead toi

substantially improved computing time.

There are facilities for the user: to specify the termination criterion, to influence the step size in the line-search
procedure, and to choose whether to calculate the first approximations to the Hessian matrices

2∂ f kH = .k ∂x ∂xi j

by finite differences.

The method is that of Griewank and Toint, Numer. Math. 39 (1982), 119-137.

ATTRIBUTES — Version: 1.1.0. Types: Real (single, double). Remark: At least 8-byte arithmetic is
recommended. Calls: FD15. Original date: December 1983. Origin: Ph. Toint, Univ. of Namur. Licence: A
third-party licence for this package is available without charge.

2 HOW TO USE THE PACKAGE

Although there are both single and double precision versions of the routine available, the user is strongly advised
to use the double precision version unless single precision on his or her machine actually means 8-byte arithmetic.

2.1 The Argument List

The single precision version

CALL VE08A (N,NS,INVAR,NVAR,ELFNCT,RANGE,XLOWER,XUPPER,
* X,FX,EPSIL,EBOUND,NGR,NIT,FKNOWN,FLOWBD,RELPR,
* DIFGRD,RESTRT,TESTGX,HESDIF,STMAX,STEPL,ISTATE,
* IPDEVC,IPFREQ,IPWHAT,LWK,WK,INFO,IFLAG)

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 1 Documentation date: 8th June 2010



VE08 HSL 2007

The double precision version

CALL VE08AD(N,NS,INVAR,NVAR,ELFNCT,RANGE,XLOWER,XUPPER,
* X,FX,EPSIL,EBOUND,NGR,NIT,FKNOWN,FLOWBD,RELPR,
* DIFGRD,RESTRT,TESTGX,HESDIF,STMAX,STEPL,ISTATE,
* IPDEVC,IPFREQ,IPWHAT,LWK,WK,INFO,IFLAG)

N is an INTEGER variable, that must be set by the user to n the number of variables. It is not altered by the routine.
Restriction: N > 0.

NS is an INTEGER variable, that must be set by the user to n the number of element functions. It is not altered bys

the routine. Restriction: NS > 0.

INVAR is an INTEGER array containing the indices of the variables in the first element, followed by those in the
second element, etc. See §5 for an example. It is not altered by the routine.

NVAR is an INTEGER array of length at least NS+1, whose kth value is the position of the first variable of element
function k, in the list INVAR. In addition, NVAR(NS+1) should be equal to the total length of INVAR plus one.
See §5 for an example. It is not altered by the routine.

ELFNCT is the name of a user supplied subroutine that computes the values of the element functions at a given point.
See complete description in §2.2. This name should be declared EXTERNAL in the calling program.

RANGE is the name of a user supplied subroutine that performs various operations related to the true range of the
element function second derivative matrices. See complete description in §2.3. This name should be declared
EXTERNAL in the calling program.

XLOWER is the name of a user supplied REAL (DOUBLE PRECISION in the D version) function routine that returns the
lower bounds on the bounded variables. See complete description in §2.4. This name should be declared
EXTERNAL in the calling program.

XUPPER is the name of a user supplied REAL (DOUBLE PRECISION in the D version) function routine that returns the
upper bounds on the bounded variables. See complete description in §2.4. This name should be declared
EXTERNAL in the calling program.

X is a REAL (DOUBLE PRECISION in the D version) array of length N which must be set by the user to the value of
the variables at the starting point. On exit, it contains the values of the variables at the best point found (usually
the solution).

FX is a REAL (DOUBLE PRECISION in the D version) variable. If the user knows the value of the objective function
at the starting point, he must set its value in FX and set FKNOWN to true. Otherwise, the user should set FKNOWN
to false and need not set FX. On exit, FX contains the value of the objective function at the point X.

EPSIL is a REAL (DOUBLE PRECISION in the D version) variable, that must be set by the user to a measure of the
accuracy (in the sense of the the Euclidean norm of the projected gradient) required to stop the minimization
procedure. This value is passed to the termination routine VE08SD (see §2.6). It is not altered by the routine.

EBOUND is a REAL (DOUBLE PRECISION in the D version) variable, that must be set by the user to a tolerance above
−5which a bound is considered to be ‘nearly active’. If it is negative, the default value 10 is used. This tolerance

is used in the anti-zigzagging device of (Bertsekas 1982), and has no influence on the precision with which the
bound constraints will be satisfied at the solution. It is not altered by the routine.

NGR is an INTEGER array of length 2. The first element NGR(1) must be set by the user to the maximum number of
calls to ELFNCT allowed for the minimization and is not altered. A suitable value will depend on the problem,
and may be chosen in the first instance between NIT(1) and 3*NIT(1). It may be necessary to increase it if
the problem is highly nonlinear. NGR(2) need not be set by the user and will contain, on exit, the actual number
of calls to the routine ELFNCT that were made during the routine’s execution.

NIT is an INTEGER array of length 2. The first element NIT(1) must be set by the user to the maximum number of
iterations that is allowed for the minimization and is not altered. The second element NIT(2) need not be be set

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 2 Documentation date: 8th June 2010



HSL 2007 VE08

by the user, and will contain, on exit, the actual number of minimization iterations performed by the routine.

FKNOWN is a LOGICAL variable. If it is set to true, FX must contain the function value at the starting point X, the first
NS positions of the working vector WK must contain the individual values of the element functions at X, and the
NVAR(NS+1)–1 following positions in WK must contain the gradients of the element functions. This option must
be used only when the gradients of all element functions are analytically available. It is not altered by the
routine.

FLOWBD is a REAL (DOUBLE PRECISION in the D version) variable, that must be set by the user to a lower bound on
the optimal value of F(x). For instance, if it is known that F(x) is always positive, it can help convergence to
pass this information to the routine. If no bound is known, then a large negative value should be used. It is not
altered by the routine.

RELPR is a REAL (DOUBLE PRECISION in the D version) variable, that should be set by the user to the machine
rounding error unit, i.e. the smallest positive ε such that 1+ε is still distinguishable from 1. The user may set
RELPR to a negative number, and the routine will compute a value for it. If it is positive on input, then it is not
altered by the routine. Otherwise, it contains, on exit, the value computed by the routine. Restriction: RELPR <
1.0.

DIFGRD is a REAL (DOUBLE PRECISION in the D version) variable, that should be set by the user to the relative step
size that is to be used in the first gradient estimation by differences. If the user does not know a suitable value,
he may set it to a negative number, and the routine will use the square root of RELPR. It is unaltered if positive,
and set to the square root of RELPR otherwise.

RESTRT is a LOGICAL variable that must be set to true by the user if VE08 is to be restarted and to false otherwise. In
the first case, approximations to the element Hessians must be stored in the vector WK from position
NS+NVAR(NS+1) onwards (see the description of WK). This preservation of second-order information may be
rather efficient. Examples for which it is useful are for multiple criteria optimization, when one wishes to
reoptimize a weighted sum of objectives with new weights and for a discretized problem with varying levels of
mesh coarseness. RESTRT is not altered by the routine.

TESTGX is a LOGICAL variable that must be set to true by the user if he provides analytical gradients in ELFNCT and
wishes them to be tested for accuracy at the starting point by comparing their values to difference
approximations, and to false otherwise. If RESTRT is true then TESTGX is reset to false and it is as if it were false
on entry. Otherwise, it is not altered by the routine.

HESDIF is a LOGICAL variable that must be set to true by the user if the initial Hessian approximations are to be
computed by differences in the element gradient values, and to false otherwise. This option is only available if
gradients are calculated in ELFNCT. When this option is not used, the element Hessians are initialized to a
correctly scaled multiple of the identity matrix. If RESTRT is true then HESDIF is reset to false and it is as if it
were false on entry. Otherwise HESDIF is not altered by the routine.

STMAX is a REAL (DOUBLE PRECISION in the D version) variable, that should be set by the user to the maximum
steplength that is allowed during the minimization process. If the user does not know a suitable value, STMAX
may be set to any negative number; the routine will then use a very large value. It is unaltered by the routine.

STEPL is a REAL (DOUBLE PRECISION in the D version) array of length 2. The first element STEPL(1) should be set
by the user to an upper bound on the length of the first step taken by the method. If such a bound is unknown,
STEPL(1) may be set to any negative number; the routine will then use a large default value. STEPL(1) is not
altered by the routine. The second element STEPL(2) need not be set by the user, and on exit will contain the
length of the last step taken by the algorithm.

ISTATE is an INTEGER array of length at least N+NS. It must be set as follows. For I=1,N, ISTATE(I) must be set
to –1 if the I-th variable is unconstrained, to 0 if it is fixed, and to 1 if it is bounded. The values of fixed
variables are never changed during the minimization process. (They may be useful, for example, when dealing
with discretized problems having boundary conditions; the variables on the boundary can then be fixed, but
otherwise treated as ordinary variables, which avoids the need for special expressions in the elements touching

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 3 Documentation date: 8th June 2010



VE08 HSL 2007

the boundary.) For I=N+1,...,N+NS, ISTATE(I) must be set to 1 if the gradient of the (I-N)-th element
function is supplied by the user, or to –1 if it has to be estimated by differences. (The difference approximations
are computed by a modification of the method proposed by (Stewart 1967). Although efficiently computed, the
use of approximated gradients can sometimes deteriorate the overall performance of VE08; analytical gradients
are always preferable when available.) ISTATE is used as workspace, so must be reset on a second entry.

IPDEVC is an INTEGER variable, that must be set by the user to the output device unit number for printing of
messages. It is not altered by the routine.

IPFREQ is an INTEGER variable, that must be set by the user to specify the frequency of output by the routine VE08:

IPFREQ < 0: no output is generated,
IPFREQ = 0: output only at first and last iteration,
IPFREQ > 0: output every IPFREQ iteration.

This argument is not altered by the routine

IPWHAT is an INTEGER variable, that must be set by the user to specify the amount of output generated when output
occurs:

IPWHAT = 0: iteration count, function value, norm of the active gradient and number of function calls,
IPWHAT = 1: + step selection iterations and linesearch parameter,
IPWHAT = 2: + vector of variables,
IPWHAT = 3: + gradient vector,
IPWHAT = 4: + last step of the algorithm,
IPWHAT = 5: + element Hessian approximations

This argument is not altered by the routine

LWK is an INTEGER array of length 2. The first element LWK(1) must be set by the user to the length of the working
array WK and is not altered. The second element LWK(2) need not be set by the user and contains, on exit, the
length of the array needed to store the approximating element matrices. The length of the workspace WK that is
required by the routine VE08 varies from problem to problem. It essentially depends on the amount of storage
needed for the element Hessian approximations. Let

NV = NVAR(NS+1)–1,
NE = maximum of NVAR(I+1)–NVAR(I), I=1,NS,
NQ = maximum of 2*N and NV,

then the minimum required storage is

LWK(1)=NS+NV+4*N+NQ+3*NE+LWK(2)

The quantity NE in the relation above is the maximum number of variables appearing in any element function.

WK is a REAL (DOUBLE PRECISION in the D version) working array of length LWK(1). On successful termination,
it contains a list of the element function values, gradients and approximating Hessians and is organized as
follows : WK(I) contains, for

I=1,...,NS, the values of f (x), i = I and x in X.i

I=NS+1,...,NS+NVAR(NS+1)–1, the NS successive element gradient vectors, one after the other,

I=NS+NVAR(NS+1),...,NS+NVAR(NS+1)+LWK(2)–1, the lower triangular parts of the element Hessian
approximations, stored one after the other in row-wise fashion.

INFO is an INTEGER variable. It need not be set by the user and contains, on exit under an error condition,
information about the error (see §2.5 for further details).

IFLAG is an INTEGER variable, that need not be set by the user and contains, on exit, the exit condition of the routine.
If this flag is greater or equal to 11, an error has been detected by the routine (see §2.5 for further details).

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 4 Documentation date: 8th June 2010



HSL 2007 VE08

2.2 Subroutine ELFNCT

We now describe the calling sequence of the routine that the user must provide to evaluate the element functions
(and possibly their gradients).

It is worth mentioning that the points at which element functions are computed are almost always feasible, that is
they satisfy whatever bounds there are. The only cases when they may not is when gradients are to be estimated by
differences; in this case, the function value may be required at some points that fail to satisfy one or more bounds by
a small amount.

The routine has the following argument list:

SUBROUTINE ELFNCT(K,X,FX,GX,NDIMK,NS,JFLAG,FMAX,FNOISE)

K is an INTEGER variable, that contains the index of the element function to be computed. It must be left
unchanged by the routine.

X is a REAL (DOUBLE PRECISION in the D version) array of length NDIMK, that contains the values of the
variables of element K, in the order in which they appear in the vector INVAR. It must be left unchanged by the
routine.

FX is a REAL (DOUBLE PRECISION in the D version) variable, that must be set by the routine to the value of the
element function at the point X.

GX is a REAL (DOUBLE PRECISION in the D version) array of length NDIMK. If JFLAG has value 2, the routine must
set GX to the components ∂f /∂x of the gradient of the element function at the point X. If JFLAG has otherk i

values, GX need not be set.

NDIMK is an INTEGER variable, that contains the number of variables in element K. It is equal to NVAR(K+1) –
NVAR(K) and must be left unchanged by the routine.

NS is an INTEGER variable, that contains the total number of elements in the problem. It must be left unchanged by
the routine.

JFLAG is an INTEGER variable, that contains a code to describe the information expected on return from the routine
ELFNCT:

JFLAG = 1: function value is needed,

JFLAG = 2: gradient and function values are needed.

JFLAG < 0: if ELFNCT sets a negative value in JFLAG, VE08 will terminate abnormally, with exit condition 25
and INFO parameter equal to JFLAG.

JFLAG = 0: if ELFNCT sets JFLAG to 0, no further calls of ELFNCT will be made to complete the current
evaluation of F and the steplength will be halved; this can be useful if F value is already too large
compared to FMAX, and if the user does not want to estimate the remaining element functions because
of cost.

If none of these events is desired, JFLAG should be left unchanged. The possibility of tampering with the
linesearch using a zero return value for JFLAG should be used with caution, especially when no bounds are
imposed and analytical gradients available, as it may reduce the overall efficiency.

FMAX is a REAL (DOUBLE PRECISION in the D version) variable, that contains the maximum function value that will
be accepted by the algorithm as satisfying the current linesearch criteria. It must be left unchanged by the
routine.

FNOISE is a REAL (DOUBLE PRECISION in the D version) variable that the routine must set to an estimate of the noise
(roundoff) present in the computation of the element function and element gradient.

An example of the use of ELFNCT is shown in §5.

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 5 Documentation date: 8th June 2010



VE08 HSL 2007

2.3 Subroutine RANGE

We now turn to describing the way in which the user can pass to the algorithm information about a linear
transformation that reduces the number of independent variables upon which each element function depends. For
example the function

2 2x + (x −x )1 2 3

depends on the two variables x ' = x and x ' = x −x . In such cases, the convergence of the algorithm may be1 1 2 2 3
substantially enhanced. For each element function k, the user must express the dependence in terms of a full-rank
matrix U , with less rows than columns, that maps the variables x , i = INVAR(NVAR(k)) up tok i

INVAR(NVAR(k+1)–1), that are involved in element function k to the smaller set. In the example of this paragraph

1 0 0U =k 0 1 −1
In such cases, the Hessian matrix can be held as

TB = U C Uk k k k

where C is a square symmetric matrix of order the number of rows in U .k k

The user should therefore provide a routine called RANGE, that is called by VE08, and has the following argument
list:

SUBROUTINE RANGE(K,MODE,W1,W2,NDIMK,NSUBK,NS)

K is an INTEGER variable, that contains the index of the element function. It must be left unchanged by the
routine.

MODE is an INTEGER variable, that contains a code for the work to be accomplished by the routine :

MODE=1: the user should provide the vector w such that U w = w .2 k 1 2

MODE=2: the user should provide the vector w with the smallest norm such that U w = w . Equivalently, w2 k 2 1 2
is the result of the application of the Moore-Penrose generalized inverse of U to w .k 1

TMODE=3: the user should provide the vector w such that U w = w .2 k 1 2

TMODE=4: the user should provide the vector w such that U w = w .2 k 2 1

MODE must be left unchanged by the routine.

W1 is a REAL (DOUBLE PRECISION in the D version) array containing the input vector w . It must be left unchanged1
by the routine.

W2 is a REAL (DOUBLE PRECISION in the D version) array that must be set by the routine to the result vector w ,2
related to U and w as required by the argument MODE. When NSUBK=NDIMK, W2 must be set equal to W1.k 1

NDIMK is an INTEGER variable, containing the number of variables in the element. It must be left unchanged by the
routine.

NSUBK is an INTEGER variable that must be set by RANGE to the number of rows in U.

NS is an INTEGER variable, containing the number of elements of the problem. It must be left unchanged by the
routine.

If the user does not know such information it is always possible to use the following ‘empty’ routine RANGE (where
REAL is replaced by DOUBLE PRECISION for the double precision version):

SUBROUTINE RANGE(K,MODE,W1,W2,NDIMK,NSUBK,NS)
REAL W1(1),W2(1)
NSUBK=NDIMK
DO 1 I=1,NDIMK
W2(I)=W1(I)

1 CONTINUE

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 6 Documentation date: 8th June 2010



HSL 2007 VE08

RETURN
END

The use of this ‘empty’ routine is nevertheless not recommended, especially when the gradients are not available
analytically, or when the option HESDIF=.FALSE. is used in VE08. It may, in these cases, result in much slower
convergence, or possibly in no convergence at all.

2.4 Functions XLOWER and XUPPER

The fact that the I-th variable of the problem is bounded is signalled to the routine VE08 by ISTATE(I) being
equal to 1. VE08 will then need to known the actual values of the bounds on this variable. This information is provided
by two user-supplied REAL (DOUBLE PRECISION in the D version) functions XLOWER(I) and XUPPER(I).

XLOWER(I) returns the value of the lower bound on the I-th variable, while XUPPER(I) returns the value of the
upper bound on this variable. Their specification is as follows:

The single precision version

REAL FUNCTION XLOWER(I)

REAL FUNCTION XUPPER(I)

The double precision version

DOUBLE PRECISION FUNCTION XLOWER(I)

DOUBLE PRECISION FUNCTION XUPPER(I)

Remarks:

1. The functions XLOWER and XUPPER are only called for arguments I such that ISTATE(I)=1, i.e. they are only
called for bounded variables.

2. When the I-th variable is bounded, both XLOWER and XUPPER are called for this variable : each bounded
variable must be bounded below and above. If the problem only incorporates one of these bounds, the other
should be supplied using a very small or a very large constant.

3. It is more efficient to declare a variable fixed (ISTATE(I)=0) than to constrain it by equal lower and upper
bounds.

2.5 Error Messages

When the exit condition of VE08, i.e. IFLAG, is greater than 10, this means that it has detected something going
wrong in the computation. The routine is terminated with IFLAG set to an appropriate error index and INFO to a
(sometimes) meaningful value. A complete list of these errors, together with the associated value of IFLAG and INFO
is given below.

IFLAG=11 The value of variable N is not positive. INFO = N.

IFLAG=12 The machine precision constant RELPR is out of range. INFO is meaningless.

IFLAG=13 The last call to ELFNCT returned a negative value for FNOISE. INFO is meaningless.

IFLAG=14 The number of element functions NS is not positive. INFO=NS

IFLAG=15 The starting position for the internal variables of the k-th element NVAR(k) is not positive. INFO = k.

IFLAG=16 The number of variables internal to the k-th element is not positive. INFO = k.

IFLAG=17 NSUBK > NDIMK on return from RANGE for element k. INFO = k.

IFLAG=18 The maximum number of iterations has been reached. INFO = maximum number of iterations.

IFLAG=19 The initial status of the k-th element function is incorrect: the only allowed values for ISTATE(N+k) are
1 (derivatives available) or –1 (derivatives not available). INFO = k.

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 7 Documentation date: 8th June 2010



VE08 HSL 2007

IFLAG=20 The initial status of the I-th variable is incorrect because the only allowed values for ISTATE(I) are 1
(bounded), 0 (fixed), or –1 (free). INFO=I.

IFLAG=21 The accumulated dimension of the elements, NVAR(NS+1)–1, is not positive. INFO = NVAR(NS+1)–1.

IFLAG=22 The index of the I-th variable that appears in the vector INVAR is not positive, or greater than N. INFO
= I.

IFLAG=23 The total available work space provided in the vector WK, of length LWK(1), is too small. INFO =
minimum necessary length of the vector WK.

IFLAG=24 The bounds on the I-th variable are inconsistent. INFO = I.

IFLAG=25 The user has stopped the minimization procedure by setting the element function flag to a negative
value. INFO = value of the element function flag.

IFLAG=26 F(x) is unbounded because the I-th variable appears linearly and is unbounded. INFO = I.

IFLAG=27 The directional derivative at the beginning of a linesearch is non-negative. This can be caused by an
incorrect analytical gradient. INFO is meaningless.

IFLAG=28 The linesearch step became too small after I trials. This can be caused by an incorrect analytical
gradient or a too noisy function or an exceptionally non-linear function. (This error is controlled by the variable
MAXLS, representing the maximum number of linesearch trials, which is set at the beginning of the code of
VE08). This can also be caused near the solution, when the accuracy requirement for termination is too high. In
this case, further progress of the algorithm seems unlikely on this machine. INFO = I.

IFLAG=29 The algorithm was stopped because the difference between two successive function values along the
current search direction is insignificant compared to the noise on these function values. This type of exit usually
occurs quite close to the solution, and is mainly due to a too high accuracy requirement for termination. In this
case, further progress of the algorithm on this machine is unlikely. INFO is meaningless.

IFLAG=30 An error was detected when scaling the I-th initial element Hessian matrix at the first step. This is
usually caused by an incorrect gradient, or by incorrect problem structure specifications. INFO = I.

IFLAG=31 The last call to the routine VE08S/VE08SD (see §2.6) returned a value for IFLAG outside the range 0 ≤
IFLAG ≤ 10. INFO = returned value of IFLAG.

IFLAG=32 The check on the correctness of the analytical gradient at the starting point, has discovered a possible
error in this computation. INFO is meaningless.

IFLAG=33 The lower bound on the objective function is not consistent with the function value at the starting point.
INFO is meaningless.

IFLAG=34 The parameter IPWHAT, which controls the amount of output required by the user, is incorrect (outside
the range 0 ≤ IPWHAT ≤ 5). INFO = IPWHAT.

IFLAG=35 The routine stopped because the norm of the computed search direction is smaller than the given
machine precision times the size of the current approximate solution. This error usually occurs when too much
accuracy is required by the user for termination. INFO = iteration number when VE08 was stopped.

IFLAG=36 The routine is stopped because 5 successive very large steps (> 0.999×STMAX) were taken. This is
interpreted as a sign of divergence of the algorithm. This usually happens when the problem’s minimum is at
infinity. INFO = iteration number when VE08 was stopped.

The values of IFLAG between 1 and 10 are left free for description of normal termination (see the description of the
routine VE08S/VE08SD in §2.6).

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 8 Documentation date: 8th June 2010



HSL 2007 VE08

2.6 Termination Criterion

One of the features of VE08 is to allow the interested user to provide a problem-suited stopping criterion. There
may be cases where the classical tests on the Euclidean length of the gradient are rather inadequate. One may wish to
use another norm, or another stopping rule altogether. This can be done by replacing the routine VE08S/VE08SD by
another routine VE08S/VE08SD incorporating the user’s stopping criterion.

The routine has the following argument list:

The single precision version

SUBROUTINE VE08S (EPSIL,NIT,NGR,DNGR,ITMAX,NFMAX,GXN,NEGCUR,
* DIFEST,X,FX,GX,DX,DF,N,INFO,IFLAG)

The double precision version

SUBROUTINE VE08SD(EPSIL,NIT,NGR,DNGR,ITMAX,NFMAX,GXN,NEGCUR,
* DIFEST,X,FX,GX,DX,DF,N,INFO,IFLAG)

EPSIL is a REAL (DOUBLE PRECISION in the D version) variable, containing a measure of the accuracy that is
required by the user to terminate the minimization method successfully. It is the same value as that passed to
VE08 by the user (see above). It must not be altered by VE08S/VE08SD.

NIT is an INTEGER variable, that contains the number of iterations already performed by VE08. It must not be
altered by VE08S/VE08SD.

NGR is an INTEGER variable, that contains the number of calls already made to the routine ELFNCT. It must not be
altered by VE08S/VE08SD.

DNGR is a REAL (DOUBLE PRECISION in the D version) variable, containing the value of NGR divided by NS, i.e. a
number representing the total number of calls to the complete objective function. It must not be altered by
VE08S/VE08SD.

ITMAX is an INTEGER variable, containing the maximum number of iterations of VE08 allowed. It must not be altered
by VE08S/VE08SD.

NFMAX is an INTEGER variable, containing the maximum number of calls to the complete objective function allowed.
It must not be altered by VE08S/VE08SD.

GXN is a REAL (DOUBLE PRECISION in the D version) variable, containing the Euclidean norm of the orthonormal
projection of the gradient onto the feasible region. It must not be altered by VE08S/VE08SD.

NEGCUR is a LOGICAL variable, whose value is true if and only if some direction of negative curvature was detected
on the current overall quadratic approximation to the objective function. It must not be altered by
VE08S/VE08SD.

DIFEST is a LOGICAL variable, whose value is true if and only if some of the element gradients are computed by
differences. It must not be altered by VE08S/VE08SD.

X is a REAL (DOUBLE PRECISION in the D version) array of length N, containing the current best point found by
the routine VE08. It must not be altered by VE08SD.

FX is a REAL (DOUBLE PRECISION in the D version) variable, containing the value of the objective function at X. It
must not be altered by VE08S/VE08SD.

GX is a REAL (DOUBLE PRECISION in the D version) array of length N, containing the overall gradient of the
overall objective function at X. It must not be altered by VE08S/VE08SD.

DX is a REAL (DOUBLE PRECISION in the D version) variable, containing the Euclidean length of the last step taken
by the routine VE08. It must not be altered by VE08S/VE08SD.

DF is a REAL (DOUBLE PRECISION in the D version) variable, containing the last improvement in objective

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 9 Documentation date: 8th June 2010



VE08 HSL 2007

function values realized by VE08. It must not be altered by VE08S/VE08SD.

N is an INTEGER variable, that contains the number of variables of the problem. It must not be altered by
VE08S/VE08SD.

INFO is an INTEGER variable, that is meaningless on input. The output value is only relevant if VE08 is terminated by
a nonzero output value of IFLAG. In this case, the argument INFO of VE08 will return this value to the user.

IFLAG is an INTEGER variable, that is meaningless on input. If if is decided to continue the minimization process, the
value 0 should be returned in IFLAG. If it is decided that the minimization is complete, a value in the range 1 ≤
IFLAG ≤ 10 should be returned. A return value outside the range 0 ≤ IFLAG ≤ 10 will cause abnormal
termination of VE08 with error message 31.

The default routine supplied with VE08 tests
−41. if the Euclidean length of the gradient is smaller than EPSIL when DIFEST is false, or is the maximum of 10

and EPSIL when DIFEST is true, and if the quadratic model looks convex (normal successful exit) (IFLAG set to
1),

2. or if the maximum number of function calls has been exceeded (IFLAG set to 2),

3. or if both the length of the last step and the last improvement in the function values are insignificant (IFLAG set
to 3).

If none of these occur, then IFLAG is set to 0.

2.7 Linesearch Step

Another interesting feature of VE08 is to allow the user with some knowledge of his problem to verify if the
proposed value of the step along the current search direction is plausible, and to modify it, if it is not the case. This
verification can be based on some relevant quantities that are passed to the user by VE08.

This verification takes the form of a routine called VE08T/VE08TD, whose argument list is as follows:

The single precision version

SUBROUTINE VE08T (A,X,FX,GXS,SNORM,S,N)

The double precision version

SUBROUTINE VE08TD(A,X,FX,GXS,SNORM,S,N)

A is a REAL (DOUBLE PRECISION in the D version) variable, containing the steplength proposed by VE08. On
output (i.e. when control is returned to VE08), it may be set to a new and more realistic stepsize for minimizing
the objective function starting from x in the direction s, i.e. A should be such that F(x+A×s) is close to its
minimum with respect to A.

X is a REAL (DOUBLE PRECISION in the D version) array of length N containing the base point for the current
linesearch. It must not be altered by VE08T/VE08TD.

FX is a REAL (DOUBLE PRECISION in the D version) variable, containing the value of the objective function at X. It
must not be altered by VE08T/VE08TD.

GXS is a REAL (DOUBLE PRECISION in the D version) variable, containing the directional derivative at the base point
in X along the direction s. It must not be altered by VE08T/VE08TD.

SNORM is a REAL (DOUBLE PRECISION in the D version) variable, containing the Euclidean length of the search
direction s. It must not be altered by VE08T/VE08TD.

S is a REAL (DOUBLE PRECISION in the D version) array of length N containing the current search direction. It
must not be altered by VE08T/VE08TD.

N is an INTEGER variable, containing the number of variables of the problem. It must not be altered by

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 10 Documentation date: 8th June 2010



HSL 2007 VE08

VE08T/VE08TD.

The default routine VE08T/VE08TD supplied with VE08 is just the empty routine:

The single precision version

SUBROUTINE VE08T (A,X,FX,GSX,SNORM,S,N)
REAL A,X(1),FX,GSX,SNORM,S(1)
RETURN
END

The double precision version

SUBROUTINE VE08TD(A,X,FX,GSX,SNORM,S,N)
DOUBLE PRECISION A,X(1),FX,GSX,SNORM,S(1)
RETURN
END

It should be replaced by a more complex routine VE08TD only if the user feels his knowledge of the problem is
sufficient to predict rather accurately the minimum of the objective function along any search direction.

3 GENERAL INFORMATION

Use of common: None.

Other routines called directly: VE08B/BD, VE08C/CD, VE08D/DD, VE08E/ED, VE08F/FD, VE08G/GD, VE08H/HD,
VE08I/ID, VE08J/JD, VE08K/KD, VE08L/LD, VE08M/MD, VE08N/ND, VE08O/OD, VE08P/PD, VE08Q/QD,
VE08R/RD, VE08S/SD, VE08T/TD; FD15A/AD, ELFNCT, RANGE, XUPPER, XLOWER.

Input/output: No input; output on device number IPDEVC.

Restrictions: N > 0, NS > 0, RELPR < 1.0.

4 METHOD

The method that is implemented by routine VE08 is a partitioned quasi-Newton algorithm, as described in
(Griewank & Toint 1982a), and whose convergence analysis for the convex case can be found in (Griewank & Toint
1982b). The theory for the non-convex decomposition is still an open question.

The main idea is that a collection of small matrices approximating the Hessian matrices of each f is used andk

updated at every iteration using the BFGS or rank 1 updates, depending on the curvature properties of f .k

The step is determined by a trust-region approach that uses a truncated conjugate-gradient algorithm, followed by a
very weak linesearch. The trust-region size is then augmented if the reduction obtained in the objective function is
reasonable when compared with the predicted reduction, and reduced otherwise.

The strategy for treating bound constraints is based on the usual projection device. For a more detailed description,
see (Bertsekas 1982).

Acknowledgements

The author of the routine, Philippe Toint, wishes to acknowledge the useful discussions with A. Griewank, and the
most kind help of J.K. Reid and I.S. Duff in setting up this specification sheet and modifying the routines to the HSL
format.

References

Bertsekas,D.P. 1982. Projected Newton Methods for Optimization Problems with Simple Constraints. SIAM
Journal of Control and Optimization 20(2):221-246.

Griewank, A. and Ph.L. Toint. 1982a. Partitioned Variable Metric Updates for Large Structured Optimization

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 11 Documentation date: 8th June 2010



VE08 HSL 2007

Problems. Numerische Mathematik (39):119-137.

Griewank, A. and Ph.L. Toint. 1982b. Local Convergence Analysis for Partitioned Quasi-Newton Updates .
Numerische Mathematik (39):429-448.

Griewank, A. and Ph.L. Toint. 1982c. On the Unconstrained Optimization of Partially Separable Functions. In
M.J.D. Powell (editor), Nonlinear Optimization 1981. Academic Press, New-York.

Stewart, G.W. 1967. A Modification of Davidon’s Minimization Method to Accept Difference Approximations
of Derivatives. Journal of the ACM 14.

5 EXAMPLE OF USE

We now consider the small example problem,
2 2 2 2minimize 1 +x + (x − x ) + 1 +x + (x − x )1 2 3 2 3 4

subject to the bound x ≤ −1.1

The solution to this problem is at the point (–1,0,0,0) and the optimal function value is 1+ 2.

This function has four variables and two elements, namely
2 21 +x + (x − x )1 2 3

and
3 21 +x + (x − x )2 3 4

We can then set N=4 and NS=2. The first element involves variables 1, 2 and 3 while the second element involves
variables 2, 3 and 4; we now build the vector INVAR corresponding to the problem :

I 1 2 3 4 5 6
INVAR(I) 1 2 3 2 3 4

← el. 1 → ← el. 2 →

In this vector, we now locate the position of the first variable of each element, and build the vector NVAR as follows:

I 1 2 3
NVAR(I) 1 4 7

Observe that NVAR(NS+1) is set to the total length of INVAR plus 1, as required.

The first variable is bounded, so we set ISTATE(1) to 1, while the other variables are unbounded, which imposes
ISTATE(I)=–1 for I=2,4. Moreover, the analytical gradients of both element functions are available, so that the last
2 components of ISTATE are set to 1. We therefore obtain

I 1 2 3 4 5 6
ISTATE(I) 1 –1 –1 –1 1 1

The minimum length required for the workspace WK, i.e. LWK is given by

LWK = 2+6+4*4+8+3*3+6 = 47

This count is obviously much more favourable when the dimension increases and when the element Hessians can
be stored in compact form.

We now give the routine ELFNCT that would describe our simple example problem:

SUBROUTINE ELFNCT(K,X,FX,GX,NDIMK,NS,JFLAG,FMAX,FNOISE)
DOUBLE PRECISION X(*),FX,GX(*),FMAX,FNOISE,TEMP,GMAX
INTEGER K,NDIMK,NS,JFLAG
TEMP=X(2)–X(3)
FX=SQRT(1.0D0+X(1)**2+TEMP**2)
FNOISE=1.0D-25*FX

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 12 Documentation date: 8th June 2010



HSL 2007 VE08

IF(JFLAG.LT.2)RETURN
GX(1)=X(1)/FX
GX(2)=TEMP/FX
GX(3)=–GX(2)
GMAX=DMAX1(DABS(GX(1)),DABS(GX(2)))
FNOISE=DMAX1(FNOISE,1.0D-25*GMAX)
RETURN
END

We now wish to write down the routine RANGE associated with our example. First, we observe that both element
functions may be reduced to dependence on two variables with the matrix

1 0 0U = .k 0 1 −1
As a consequence, it is easy to verify that the following routine RANGE satisfies all the above requirements

SUBROUTINE RANGE(IELF,MODE,W1,W2,NDIMI,NSUBI,NS)
INTEGER IELF,MODE,NDIMI,NSUBI,NS
DOUBLE PRECISION W1(*),W2(*)
NSUBI=2
GO TO (481,482,483,484),MODE

C
C 1) U*W1=W2
C
481 CONTINUE

W2(1)=W1(1)
W2(2)=W1(2)-W1(3)
RETURN

C
C 2) U*W2=W1
C
482 CONTINUE

W2(1)=W1(1)
W2(2)=0.5D+0*W1(2)
W2(3)=-W2(2)
RETURN

C
C 3) U'*W1=W2
C
483 CONTINUE

W2(1)=W1(1)
W2(2)=W1(2)
W2(3)=-W1(2)
RETURN

C
C 4) U'*W2=W1
C
484 CONTINUE

W2(1)=W1(1)
W2(2)=W1(2)
RETURN
END

As one can see, writing routine RANGE is not difficult.

The last thing we have to set up for our example is the bound specification. Only the first variable is bounded, so
we do not have to distinguish between them for finding the bounds. Moreover, it is only bounded above, so we have
to build an artificial lower bound. This gives the following functions :

DOUBLE PRECISION FUNCTION XLOWER(IVAR)
INTEGER IVAR
XLOWER=–1.0D+20
RETURN
END

and

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 13 Documentation date: 8th June 2010



VE08 HSL 2007

DOUBLE PRECISION FUNCTION XUPPER(IVAR)
INTEGER IVAR
XUPPER=–1.0D+0
RETURN
END

This completes the supply of information to VE08. The problem may be solved using the following main program.
INTEGER N,NS,IPFREQ,IPWHAT,IPDEVC,INFO,IFLAG
INTEGER INVAR(6),NVAR(3),INTVAR(1000)
INTEGER ISTATE(6),NIT(2),NGR(2),LWK(2)
LOGICAL FKNOWN,RESTRT,TESTGX,HESDIF
DOUBLE PRECISION FX,EPSIL,EBOUND
DOUBLE PRECISION FLOWBD,DIFGRD,STMAX
DOUBLE PRECISION X(4),WK(47),STEPL(2)
DOUBLE PRECISION XUPPER,XLOWER
EXTERNAL XUPPER,XLOWER,ELFNCT,RANGE
DOUBLE PRECISION EPSMCH,RELPR,FD15AD
DATA INVAR / 1, 2, 3, 2, 3, 4 /
DATA NVAR / 1, 4, 7 /
DATA ISTATE / 1, - 1, - 1, - 1, 1, 1 /
DATA X / 3.0D+0, 3.0D+0, 3.0D+0, 3.0D+0 /
N = 4
NS = 2
EPSMCH = FD15AD('E')
EPSIL = 1.0D-7
EBOUND = 1.0D-5
NGR(1) = 500
NIT(1) = 1000
FKNOWN = .FALSE.
FLOWBD = 0.0D+0
RELPR = EPSMCH
DIFGRD = SQRT(EPSMCH)
RESTRT = .FALSE.
TESTGX = .TRUE.
HESDIF = .FALSE.
STMAX = - 1.0D+0
STEPL(1) = - 1.0D+0
IPDEVC = 6
IPFREQ = 0
IPWHAT = 2
LWK(1) = 47
CALL VE08AD(N,NS,INVAR,NVAR,ELFNCT,RANGE,XLOWER,XUPPER,

* X,FX,EPSIL,EBOUND,NGR,NIT,FKNOWN,FLOWBD,
* RELPR,DIFGRD,RESTRT,TESTGX,HESDIF,STMAX,
* STEPL,ISTATE,IPDEVC,IPFREQ,IPWHAT,
* LWK,WK,INFO,IFLAG)

STOP
END

This produces the following output.

**** ITERATION -1 ( AFTER 4.00 ( 8) FUNCTION CALLS)

FUNCTION VALUE = 0.4576491D+01

NORM OF THE PROJECTED GRADIENT = 0.949D+00

STEP STRATEGY ITERATIONS 0 LINESEARCH PARAMETER 0.100D+0

APPROXIMATE SOLUTION X

-0.10000D+01 0.30000D+01 0.30000D+01 0.30000D+01

**** ITERATION 5 ( AFTER 11.00 ( 22) FUNCTION CALLS)

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 14 Documentation date: 8th June 2010



HSL 2007 VE08

FUNCTION VALUE = 0.2414214D+01

NORM OF THE PROJECTED GRADIENT = 0.158D-10

STEP STRATEGY ITERATIONS 15 LINESEARCH PARAMETER 0.100D+0

APPROXIMATE SOLUTION X

-0.10000D+01 0.15816D-10 0.15816D-10 0.15816D-10

************* EXIT OF ROUTINE VE08AD *************

TERMINATION CRITERION OF USER SATISFIED (FLAG= 1)

We now consider a restart of VE08, after some previous computation. Assume that after solving the problem we wish
to solve another which is the same except that the first element function is scaled by 0.9. This will require the stored
Hessian approximations to be rescaled. The components of WK are

WK(1) f1
WK(2) f2
WK(3) to WK(5) g1
WK(6) to WK(8) g2
WK(9) to WK(11) C (The Hessians are approximated1

TWK(12) to WK(14) C by U C U , see §2.3)2 k k k

The sequence of instructions preceding the restart call to VE08 is now as follows :

C RESCALE THE APPROXIMATE HESSIANS
DO 10 I=9,11
WK(I)=WK(I)*0.9

10 CONTINUE
C
C RESET THE PARAMETERS OF VE08AD

RESTRT=.TRUE.
C
C RESTART CALL TO VE08AD

...

All use is subject to licence. VE08 v 1.1.0
http://www.hsl.rl.ac.uk/ 15 Documentation date: 8th June 2010


