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1 SUMMARY

HSL EA19 is designed to compute the ne leftmost eigenvalues λ1 ≤ λ2 ≤ ... ≤ λne and corresponding eigenvectors
x1, . . . ,xne of a real symmetric (or Hermitian) operator A acting in the n-dimensional real (or complex) Euclidean
space R n, or, more generally, of the problem

Ax = λBx, (1.1)

where B a real symmetric (or Hermitian) positive definite operator. By applying HSL EA19 to−A, the user can compute
the ne rightmost eigenvalues of A and the corresponding eigenvectors. HSL EA19 does not perform factorizations of
A or B and thus is suitable for solving large-scale problems for which a sparse direct solver for factorizing A or B is
either not available or is too expensive.

The convergence may be accelerated by the provision of a symmetric positive-definite operator T that approximates
the inverse of (A−σB) for a value of σ that initially does not exceed λ1. The operator T is called the preconditioner.
The choice of T is discussed further in §2.11 and Technical Report RAL-TR-2010-019 .

We stress that neither A nor B nor T needs to be available explicitly: HSL EA19 only requires the multiplication of
sets of vectors by A, B, and T .

HSL EA19 implements a subspace iteration method, i.e. it generates a sequence of subspaces V i, i = 1,2, . . ., that
contain approximations to the eigenvectors of the problem. All subspaces V i are of the same dimension m≥ ne. The
simplest choice for m is m = ne but it is desirable that there is a significant gap λm+1−λne both for a satisfactory rate
of convergence to the rightmost eigenvalues of interest and for the error estimation scheme (see §4.2). The subspace
iteration method implemented by HSL EA19 is based on the Jacobi-conjugate preconditioned gradients (JCPG) scheme
of Ovtchinnikov described in [4], [5], and [6]. This method requires at least 4m vectors of length n (which include m
approximate eigenvectors) and two 2m-by-2m matrices to be stored in main memory. 2m additional vectors of length
n are needed if the user opts for reducing the number of multiplications by A; in the case of the generalized problem
(1.1), the same applies to B.

The user may supply any number ni ≤m of vectors to be used by the package for the construction of a basis in the
initial subspace: this option may be used to reduce the computation time in cases where good approximations to some
eigenvectors are available. One way of providing such approximations is by restarting from previously calculated
eigenvectors, see §2.8.

ATTRIBUTES — Version: 1.4.2 (6th April 2022). Date: July 2007. Types: Real (single, double), Complex
(single, double). Calls: Real: COPY, AXPY, DOT, NRM2, SYRK, GEMM, SYGV, ILAENV, KB05. Complex:
COPY, AXPY, DOTC, SCNRM2/DZNRM2, HERK, GEMM, HEGV, ILAENV, KB07. Origin: E. Ovtchinnikov, Har-

row School of Computer Science, University of Westminster, London, UK; and J. K. Reid. Language: Fortran 95 +
TR 15581 (allocatable components).

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

Access to the package requires a USE statement
Single precision version

use HSL EA19 single

Double precision version
use HSL EA19 double Complex version
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use HSL EA19 complex

Double complex version
use HSL EA19 double complex

If it is required to use more than one module at the same time, the derived types (§2.3) must be renamed in all but
one of the use statements.

To compute several leftmost eigenpairs of the problem (1.1), the user must call the following subroutines:

EA19 initialize : must be called once to set the parameters of the problem and initialize private data.

EA19 solve : must be called in a reverse communication loop (see §2.4.2).

EA19 terminate : must be called once to deallocate all arrays that have been allocated by EA19 solve.

Several problems can be solved simultaneously, i.e. the package does not require the solution of one problem to
be finished before the solution of the next starts, as long as for each problem a separate set of arguments for the above
three subroutines is used. However, if two or more problems of the same type need to be solved, it is reasonable to
solve them one after another in order to reduce the amount of memory used.

2.2 Package types

We use the term package type to mean default real if the single precision version is being used, double precision real
for the double precision version, default complex for the complex version and double precision complex for the double
complex version.

We also use package real type to mean default real for the single precision and complex versions, and double
precision real for the double precision and double precision complex versions.

2.3 The derived data types

The module has three derived types: EA19 control, EA19 keep and EA19 info. The components of EA19 control
are control parameters that are described in §2.5. All the control parameters are set to their defaults when a variable of
the type EA19 control is declared. The user can change the value of any control before calling EA19 initialize,
and the values of some controls at any time, see end of §2.5. The components of EA19 keep are used to keep private
data between the calls to EA19 solve. The components of EA19 info contain information about the execution of
subroutine EA19 solve (see §2.6).

2.4 Argument lists

2.4.1 The initialization subroutine

For each problem, the user must first call the initialization subroutine EA19 initialize:
call EA19 initialize( control, standard, n, m, nep, kw, keep, err )

control is a scalar structure of INTENT(IN) and of the type EA19 control. Its components are described in §2.5.

standard is a scalar of INTENT(IN) and LOGICAL type that defines the type of the problem. For a standard problem
(B = I), set standard = .true., and for a generalized one set standard = .false..

n is a scalar of INTENT(IN) and of default INTEGER type that holds the size of the problem. Restriction: n ≥ 1.

m is a scalar of INTENT(IN) and of default INTEGER type that holds the dimension of the iterated subspace. Restric-
tion: 1 ≤ m ≤ n.
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nep is a scalar of INTENT(IN) and of default INTEGER type that holds the number of eigenpairs needed. Restriction:
1 ≤ nep ≤ m.

kw is a scalar of INTENT(OUT) and of default INTEGER type that holds the third dimension of the work array W used
by the solver subroutine EA19 solve.

keep is a scalar structure of INTENT(OUT) and of the type EA19 keep that holds private data.

err is a scalar of INTENT(OUT) of default INTEGER type that is used as an error flag. On successful return, err = 0;
non-zero values indicate errors and warnings, which are described in §2.12.

2.4.2 The solver

To compute several leftmost eigenpairs of the problem (1.1), the following subroutine call must be made repeatedly:
call EA19 solve( control, lambda, X, W, V, U, ido, nvec, arg, res, keep, info )

control is a scalar of INTENT(IN) and of the type EA19 control, whose components are explained in §2.5.

lambda is a one-dimensional array of package real type, INTENT(INOUT), and size that is not less than m. At no
stage of the computation should lambda be changed by the user. It holds approximate eigenvalues. When the
computation is complete (ido = -1), they are in ascending order.

X is a two-dimensional array of package type, INTENT(INOUT), and dimensions n and m. If the user has a set of ni ≤ m
vectors that span an approximation to the space spanned by some of the leftmost eigenvectors, the computation
time may be reduced by setting control%user X to ni and putting these vectors into the first ni columns of X
before the first call to EA19 solve. They need not be orthonormalized, that is, XHBX need not be near I. At
no other stage of the computation should X be changed by the user. X(:,i) holds an approximate eigenvector
corresponding to the approximate eigenvalue lambda(i), i = 1, 2, ... m. They are orthonormalized, that is,
XHBX = I. On completion (ido = -1), the first nep approximate eigenpairs satisfy the convergence test (see
§2.7).

W is a three-dimensional work array of package type, INTENT(INOUT), and dimensions n, m and kw, where n and m are
specified by the user when calling EA19 initialize and kw is returned by it with the value 3, 5, or 7. W must
not be changed by the user except as specified in the description of ido, nvec, arg and res.

V is a three-dimensional work array of package type, INTENT(INOUT), and dimensions 2*m, 2*m and 2, where m is
specified by the user when calling EA19 initialize. At no stage of the computation should V be changed by
the user.

U is a one-dimensional work array of package real type, INTENT(INOUT), and size not less than 2*m, as specified by
the user when calling EA19 initialize. At no stage of the computation should U be changed by the user.

ido is a scalar of INTENT(INOUT) and of default INTEGER type whose value ranges between -3 and 4. Before the first
call to EA19 solve, ido must be set to 0. For a restart (see §2.8), ido must be set to 4. No other values may be
assigned to ido by the user. After each call, the value of ido must be inspected by the user’s code, so that the
necessary action is taken, viz.

• ido = -3 indicates an error return;

• ido = -2 indicates that the computation has been stopped because the limit, control%max it, on the
number of iterations has been reached (for restarting see §2.8);

• if ido = -1, then the computation is complete;
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• if ido = 1, then the user must apply the operator A to the set of vectors specified by the arguments nvec
and arg;

• if ido = 2, then the user must apply the operator T to the vectors specified by nvec and arg (T may be
the identity operator);

• if ido = 3, the user must apply the operator B to the vectors specified by nvec and arg (note that this will
not happen if standard = .true.).

nvec is a scalar of INTENT(OUT) and of default INTEGER type that holds the number of vectors to which A, B or T
must be applied.

arg is a scalar of INTENT(OUT) and of default INTEGER type that is given a value if ido>0; if arg>0 then the operator
specified by ido (A, B or T ) must be applied to the columns of W(:,1:nvec,arg), otherwise it must be applied
to the columns of X(:,1:nvec); note that arg is always positive if ido=2.

res is a scalar of INTENT(INOUT) and of default INTEGER type that is given a value if ido>0; the nvec column vectors
resulting from the application of the operator specified by ido (A, B or T ) must be placed into W(:,1:nvec,res),
where res 6=arg.

keep is a scalar structure of INTENT(INOUT) and of the type EA19 keep that holds private data. At no stage of the
computation should keep be changed by the user.

info is a scalar structure of INTENT(INOUT) and of the type EA19 info that contains information about the execution
of the subroutine (see §2.6). At no stage of the computation should info be changed by the user.

2.4.3 The terminating subroutine

The memory allocated by EA19 solve may be released by making the following subroutine call:
EA19 terminate( keep, info )

keep is a scalar structure of INTENT(INOUT) and of the type EA19 keep. On exit, its components that are allocatable
arrays will have been deallocated.

info is a scalar structure of INTENT(INOUT) and of the type EA19 info. On exit, its components that are allocatable
arrays will have been deallocated.

2.5 Derived data type for control parameters

The module contains a derived type called EA19 control that has the following components.

max it is a scalar of type default INTEGER that contains the maximum number of JCPG iterations to be performed
since the previous call with ido = 0 or ido = 4. If minAprod is true, the number of JCPG iterations is approxi-
mately equal to the number of calls with ido=1. If minAprod is false (its default value), it is approximately one
third of the number of calls with ido=1. The default is max it=100. Restriction: max it ≥ 0.

abs tol lambda is a scalar of package real type that holds an absolute tolerance used when testing the estimated
eigenvalue error, see §2.7. The default value is abs tol=0. Negative values are treated as the default.

rel tol lambda is a scalar of package real type that holds a relative tolerance used when testing the estimated
eigenvalue error, see §2.7. The default value is 10*epsilon(lambda). Negative values are treated as the
default.
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tol vector is a scalar of package real type that holds a tolerance used when testing the estimated eigenvector error,
see §2.7. If tol vector is set to zero, the eigenvector error is not estimated. If a negative value is assigned, the
tolerance is set to 10*epsilon(lambda). The default value is 0.

abs tol residual is a scalar of package real type that holds an absolute tolerance used when testing the residual,
see §2.7. If a negative value is assigned, the tolerance is set to epsilon(lambda)*

√
n times the estimated norm

of A. The default value is 0.

rel tol residual is a scalar of package real type that holds a relative tolerance used when testing the residual, see
§2.7. If both abs tol residual and rel tol residual are set to 0, then the residual norms are not taken
into consideration by the convergence test, see §2.7. If a negative value is assigned, the tolerance is set to
sqrt(epsilon(lambda)). The default value is 0.

u err is a scalar of type default INTEGER that holds the unit number for error messages. Printing is suppressed if
u err<0. The default is u err=6.

u wrn is a scalar of type default INTEGER that holds the unit number for warning messages. Printing is suppressed if
u wrn<0. The default is u wrn=6.

u mon is a scalar of type default INTEGER that holds the unit number for messages monitoring the convergence.
Printing is suppressed if u mon<0. The default is u mon=6.

verbosity is a scalar of type default INTEGER that determines the level of detail in printing. Possible values are:

< 0 : no printing;
0 : error and warning messages only;
1 : the type (standard or generalized) and the size of the problem, the number of eigenpairs

requested, the error tolerances and the size of the subspace are printed before the iterations start;
2 : as 1 but, for each eigenpair tested for convergence (see §2.7), the iteration number, the index of

the eigenpair, the eigenvalue, whether it has converged, the residual norm, and the error estimates
are printed;

> 2 : as 1 but with all eigenvalues, whether converged, residual norms and eigenvalue/eigenvector
error estimates printed on each iteration.

The default is verbosity=0. Note that for eigenpairs that are far from convergence, ‘rough’ error estimates are
printed (the estimates that are actually used by the stopping criteria, see §2.7, only become available on the last
few iterations).

minAprod is a scalar of type default LOGICAL that determines whether the number of multiplications by A is to be
reduced at the expense of memory. If minAprod=.false., then 3 returns with ido = 1 are made for multiplica-
tions of nvec vectors by A on each iteration. If minAprod=.true., then only one such return is made on each
iteration; however, kw (the final dimension of the array W) is increased by 2 since 2∗m additional package type
vectors of length n need to be stored in this case. The default is minAprod = .false..

minBprod is a scalar of type default LOGICAL that determines whether the number of multiplications by B is to be
reduced at the expense of memory. If minBprod=.false., then 4 returns with ido = 3 are made for multiplica-
tions of nvec vectors by B on each iteration. If minBprod=.true., then only one such return is made on each
iteration; however, kw (the final dimension of the array W) is increased by 2 since 2∗m additional package type
vectors of length n need to be stored in this case. The default is minBprod=.false..

user X is a scalar of type default INTEGER. If user X>0 then the first user X columns of X will be incorporated
into the initial subspace V 0 on a call with ido=0. Hence, if the user has good approximations to some of
the required eigenvectors, the computation time may be reduced by putting these approximations into the first
user X columns of X. We note that any eigenvectors that are known a priori (e.g. the so-called rigid body
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motions in liner elasticity problems) should be utilized in this way, and that if the desired accuracy has not
been achieved within max it iterations, the iterations can be continued by setting user X to m and resuming the
reverse communication loop (see §2.8). The default is user X=0, i.e. the columns of X are overwritten by the
solver. Restriction: 0 ≤ user X ≤ m.

err est is a scalar of type default INTEGER that defines which error estimation scheme for eigenvalues and eigenvec-
tors is to be used by the stopping criterion. In the current version of the package, two schemes are implemented.
If err est=1, then residual error bounds are used, notably, a modified Davis-Kahan estimate for the eigenvector
error and the Lehmann bounds for the eigenvalue error (see §4.2 and [8]). If err est=2, then the eigenvector
and eigenvalue errors are estimated by analysing the convergence curve for the eigenvalues (see §4.2 and [8]).
The default is err est=2. Restriction: err est=1 or 2.

After the call to EA19 initialize, the values of the components minAprod and minBprod are recorded in keep
and subsequent changes to these parameters by the user are ignored. When EA19 solve is called with ido=0 or ido=4,
the values of the components max it, err est, abs tol lambda, rel tol lambda, tol vector, abs tol residual,
and rel tol residual are also recorded in keep; subsequent changes to these parameters by the user are ignored,
except that max it may be made smaller than the value it had the last time EA19 solve was called with ido=0 or
ido=4.

2.6 Information returned to the user

The derived type EA19 info has the following components that are used to return information to the user.

flag is an INTEGER scalar that is used as an error flag. If a call is successful, flag has value 0 on exit. A nonzero
value of flag indicates an error or a warning (see §2.12.2).

data is an INTEGER scalar that holds additional information about errors and warnings (see §2.12.2).

iteration is an INTEGER scalar that holds the number of iterations since the previous ido = 0 or ido = 4 call.

converged is a one-dimensional allocatable array of type LOGICAL. This array is allocated of size m by EA19 solve
at the call with ido=0, and deallocated by EA19 terminate. For i = 1,2,..., m, converged(i) has the value
.true. if the eigenvector X(i) has been accepted as converged and .false. otherwise.

res norms is a one-dimensional allocatable array of package real type. This array is allocated of size m by EA19 solve
at the call with ido=0, and deallocated by EA19 terminate. For a converged eigenpair (converged(i) having
the value .true.), res norms(i) contains the Euclidean norm of the residual for the eigenpair lambda(i),
X(i) (see §4.2). For a non-converged eigenpair, it holds the residual norm for the current approximate eigenpair
lambda(i), X(i) or the corresponding approximation of the previous iteration., or -1.0 if not available. If an
estimate is available for the norm ‖A‖, then it is worth checking that all values res norms(i) are substantially
above the value ‖A‖ε, where ε is the machine accuracy (the value returned by the Fortran 95 intrinsic function
epsilon). Residual vectors whose norm approaches this ‘residual floor’ value are likely to be too polluted by
the round-off errors involved in their calculations to contain any useful information, and it might be better to
stop the iterations as they would not make much of a progress in the circumstances (mind that lambda(i) and
X(i) are not ordered until full convergence).

err lmd is a one-dimensional allocatable array of package real type. This array is allocated of size m by EA19 solve
at the call with ido=0, and deallocated by EA19 terminate. For a converged eigenpair (converged(i) hav-
ing the value .true.), err lmd(i) contains the estimated eigenvalue error for the approximate eigenpair
lambda(i), X(i). For a non-converged eigenpair, it holds such an estimate for the current approximate eigen-
pair lambda(i), X(i) or the corresponding approximation of the previous iteration, or -1.0 if not available.
These estimates take no account of round-off error and refer to the errors that would be obtained by solving
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exactly the eigenvalue problem (4.1) using the array X for the matrix V . Eigenvalues of such accuracy may be
obtained by restarting the computation in higher precision (see the example in §5.2).

err X is a one-dimensional allocatable array of package real type. This array is allocated of size m by EA19 solve at
the call with ido=0, and deallocated by EA19 terminate. For a converged eigenpair (converged(i) having the
value .true.), err X(i) contains the estimated Euclidean norm error for the approximate eigenvector X(i).
For a non-converged eigenpair, it holds such an estimate for the current approximate eigenpair lambda(i), X(i)
or the corresponding approximation of the previous iteration, or -1.0 if not available.

2.7 Convergence test

An approximate eigenpair {x,λ} is considered to have converged if all of the following three conditions are satisfied:

1. if control%abs tol lambda and control%rel tol lambda are not both equal to zero, then the estimated error
in the approximate eigenvalue must be less than or equal to

max(control%abs tol lambda, δ*control%rel tol lambda),

where δ is the estimated average distance between eigenvalues.

2. if control%tol vector is not zero, then the estimated sine of the angle between the approximate eigenvector
and the invariant subspace corresponding to the eigenvalue approximated by λ must be less than or equal to
control%tol vector.

3. if control%abs tol residual and control%rel tol residual are not both equal to zero, then the Euclidean
norm of the residual, ‖Ax−λBx‖2, must be less than or equal to

max(control%abs tol residual, control%rel tol residual*‖λBx‖2).

We note that the stopping criteria just described are applied to the first ne eigenpairs only, i.e. if ne < m then the
errors and residuals of the last m−ne eigenpairs are not taken into account. Eigenpairs are tested for convergence until
the first non-converged one is found; the rest are considered non-converged no matter what the estimated error.

2.8 Restarting the computation

Failure for all the sought eigenpairs to have converged within the limit specified by control%max it is indicated by
ido having the value -2. In this case, info%data contains the number of eigenpairs that have not converged to the
desired accuracy, either because of the insufficient number of iterations or the use of stopping criteria that are not
applicable to some eigenpairs (see the description of err est in §2.5). The remaining eigenpairs can be computed by
restarting the computation as follows:

1. Set control%user X to m.

2. Set ido=4.

3. Consider whether the same limit on number of iterations is appropriate for the new sequence of iterations. If
not, reset control%max it.

4. Resume the reverse communication loop described in §2.4.2 with the same X and keep.
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2.9 The use of initial approximations to eigenvectors

If the user has a set of ni ≤ m vectors that span an approximation to the space spanned by some of the leftmost
eigenvectors, the computation time may be reduced by setting control%user X to ni and putting these vectors into
the first ni columns of X before the first call to EA19 solve. They need not be orthonormalized, that is, XHBX need not
be near I. Such approximations may come from previous calls of EA19 solve for the problem, perhaps with smaller
values of m or higher tolerances, or from a call that failed to compute all wanted eigenpairs.

2.10 The computational cost

Subroutine EA19 solve implements an iterative method, and its computational cost depends on the number of iter-
ations and the computational cost of each iteration. The number of iterations can be reduced by preconditioning,
described in §2.11. The computational cost of an iteration depends on the computational cost of multiplication by A, B
and T , the size of the problem n, the number of iterated vectors m and the values of the control parameters minAprod
and minBprod.

Let us denote by t(A), t(B) and t(T ) the CPU times for one multiplication by A, B and T respectively, and by
t(n,m,k) the CPU time for the multiplication of an n-by-k matrix by a k-by-m matrix.

If the problem is standard (B is the identity) and minAprod=.false., the CPU time per iteration is approximately

3t(A)+ t(T )+8t(mn,mn,n)+5t(n,mn,mn)+2t(mc,mn,n)+2t(n,mn,mc),

where mc and mn are the number of converged and non-converged eigenpairs respectively. The required memory is
approximately 4mn package type variables.

If the problem is standard and minAprod=.true., the CPU time per iteration is approximately

t(A)+ t(T )+8t(mn,mn,n)+9t(n,mn,mn)+2t(mc,mn,n)+2t(n,mn,mc).

The required memory is approximately 6mn package type variables.
If the problem is generalized, minAprod=.false., and minBprod=.false., then the CPU time per iteration is

approximately

3t(A)+3t(B)+ t(T )+8t(mn,mn,n)+5t(n,mn,mn)+2t(mc,mn,n)+2t(n,mn,mc).

The required memory is approximately 4mn package type variables.
If the problem is generalized, minAprod=.true., and minBprod=.false., then the CPU time per iteration is

approximately

t(A)+3t(B)+ t(T )+8t(mn,mn,n)+9t(n,mn,mn)+2t(mc,mn,n)+2t(n,mn,mc).

The required memory is approximately 6mn package type variables.
If the problem is generalized, minAprod=.false., and minBprod=.true., then the CPU time per iteration is

approximately

3t(A)+ t(B)+ t(T )+8t(mn,mn,n)+9t(n,mn,mn)+2t(mc,mn,n)+2t(n,mn,mc).

The required memory is approximately 6mn package type variables.
If the problem is generalized, minAprod=.true., and minBprod=.true., then the CPU time per iteration is

approximately

t(A)+ t(B)+ t(T )+8t(mn,mn,n)+13t(n,mn,mn)+2t(mc,mn,n)+2t(n,mn,mc).

The required memory is approximately 8mn package type variables.
The above estimates assume that no nearly-linearly-dependent search direction vectors have been encountered,

which is normally the case.
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2.11 The use of preconditioning

The estimates of the previous section show that the computational cost of an iteration may be large if large numbers
of eigenpairs are needed. Hence, quick convergence is essential. As mentioned in §1, convergence may be accelerated
by applying a suitable preconditioner T when requested by EA19 solve (i.e., when ido=2) and a good initial choice
for T is an operator that approximates the inverse of (A−σB) for a shift σ that does not exceed λ1.

In the real case, one way to compute V = TU is to use an iterative method for solving the system (A−σB)V =U ,
e.g. MA61A/AD, which computes an incomplete LDLT decomposition of a positive-definite matrix. We stress that this
system does not have to be solved to a high accuracy; in fact, with MA61A/AD the number of iterations can be set to 1,
in which case MA61A/AD just solves the system LDLTV =U , where L is lower-triangular, D diagonal and LDLT ≈ A
(i.e. the preconditioner T is the inverse of LDLT ).

Another possibility is the use of the multigrid or algebraic multigrid preconditioning (see [1]).
Once k eigenpairs have been computed, it is desirable to use a shift σ that is near λk. In this case, preconditioning

can be done by approximately solving the system (A−σB)V = U in a subspace of vectors that are B-orthogonal to
the converged eigenvectors (we say that vectors u and v are B-orthogonal if uHBv = 0). We note that EA19 solve
provides a set of vectors U that are B-orthogonal to all the converged eigenvectors and B-orthogonalizes the set of
vectors V = T X to the converged eigenvectors. If the preconditioner setup is expensive, the user does not need to
revisit it while k is unchanged. Note that information about the latest converged eigenpair is available in info (see
§2.6).

2.12 Error codes

A successful return from EA19 initialize and EA19 solve is indicated respectively by err and info%flag hav-
ing the value zero. A negative value indicates an error, a positive value indicates a warning; and, for EA19 solve,
info%data provides further information about some errors and warnings.

2.12.1 Error codes for EA19 initialize

Possible negative values of err are as follows:

-1 Error in the problem size: n<1.

-2 Error in the subspace dimension: m<1 or m>n.

-3 Error in the number of eigenpairs: nep<1 or nep>m.

The value 1 indicates that n=m, and hence the Rayleigh-Ritz procedure in the initial subspace is going to be used
instead of the conjugate gradient iterations.

2.12.2 Error codes for EA19 solve

On return from EA19 solve, possible negative values of info%flag are as follows:

-1 The initialization subroutine EA19 initialize has not been called.

-2 The value of ido assigned by the user is neither 0 nor 4.

-3 Wrong control%max it (negative or greater than the value it had last time EA19 solve was called with ido=0
or ido=4 – see §2.5).

-4 Error in control%err est: the value of control%err est is neither 1 nor 2.
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-5 control%user X<0 or control%user X>m.

-6 All convergence tolerances have the value zero.

-10 Not enough memory; info%data contains the value of the Fortran stat parameter returned by an allocate
statement.

-20 Operator B is not positive definite or an unauthorized change has been made to X, U, V or W.

Possible positive values of info%flag are:

1 The number of iterations exceeded control%max it before all eigenpairs had converged.

2 The iterations have been terminated because no further improvement in accuracy is possible (this may happen
if the preconditioner is not positive definite, or if the components of the residual vectors are so small that the
round-off errors make them essentially random).

In both cases, the value of info%data is set to the number of non-converged eigenpairs.

3 GENERAL INFORMATION

Other routines called directly: The HSL routine KB07A/AD. The BLAS routines SCOPY/DCOPY/CCOPY/ZCOPY,
SAXPY/DAXPY/CAXPY/ZAXPY, SDOT/DDOT/CDOTC/ZDOTC, SNRM2/DNRM2/SCNRM2/DZNRM2, SSYRK/DSYRK/
CHERK/ZHERK and SGEMM/DGEMM/CGEMM/ZGEMM. The LAPACK routines ILAENV, SSYGV/DSYGV/CHEGV/ZHEGV.

Other modules used directly: The package contains other modules with names starting HSL EA19. These should not
be accessed directly by the user.

Input/output: Error and warning messages are printed to control%u err and control%u wrn output units respec-
tively, and messages monitoring the convergence are printed to the output unit control%u mon (see §2.5).

Restrictions:
n≥1, 1≤m≤n, 1≤nep≤m
control%max it≥0
control%user X≥0
control%err est=1 or 2

ido should not be set by the user to a value other than 0 or 4.

A, B and T are real symmetric or Hermitian

B and T are positive definite

The convergence tolerances are not all zero

4 METHOD

4.1 The iterative scheme

HSL EA19 implements the Jacobi-conjugate preconditioned gradients (JCPG) method of Ovtchinnikov described in
[4], [5], and [6]. In this method, a sequence of subspaces V i of dimension m is generated until a subspace is produced
that contains good enough approximations to the required eigenvectors. The iterative scheme that generates V i+1 out
of V i has two main components: the Rayleigh-Ritz procedure and the conjugate gradient method.
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The Rayleigh-Ritz procedure is an algorithm for finding approximations to eigenvectors of a given problem in a
given trial subspace. Let V be a matrix whose columns form a basis of the trial subspace V . The approximations
in question, called Ritz vectors are defined as x̃ j = V x̂ j, where x̂ j are the eigenvectors of the generalized eigenvalue
problem

V HAV x̂ = λ̂V HBV x̂, (4.1)

where V H is the adjoint matrix for V (transpose of V in the real case). The corresponding eigenvalues of (4.1) are
called Ritz values. We note that the Ritz vectors are B-orthogonal, i.e. (Bx̃i, x̃ j) = 0 for i 6= j.

The second component, the conjugate gradient method, is a linear search minimization method whereby the new
approximation xi+1 to the minimum point x of a functional is sought in the direction defined by the linear combination
of the gradient gi and the previous search direction:

xi+1 = xi−αiyi, yi = gi +βiyi−1. (4.2)

Here αi is defined by the condition (gi+1,yi) = 0, which implies that xi+1 is the minimum point in the direction defined
by the search vector yi, and βi is such that the angle between yi and the optimal search direction xi− x is minimal
possible. In the case of the quadratic functional φ(x) = (Lx,x)− 2( f ,x), where L is symmetric (Hermitian) positive
definite, the latter condition on βi is equivalent to the condition that (Lyi,yi−1) = 0, and yi is said to be L-conjugate to
yi−1. In the case of the eigenvalue problem (1.1), the leftmost eigenvalue λ1 of which minimizes the Rayleigh quotient
functional λ(x) = (Ax,x)/(Bx,x), the optimal search direction is found by conjugating with respect to the so-called
Jacobi orthogonal complement correction operator – here we refrain from introducing this operator explicitly; further
details can be found in [4], [5], and [6]. It remains to note that the convergence of the conjugate gradient iterations
(4.2) can be substantially accelerated by applying a properly chosen symmetric (Hermitian) positive definite operator
T , referred to as the preconditioner, to the gradient (see e.g. [2]). The theory of preconditioning for eigenvalue
computation is fairly difficult – the only comment we can afford here is that preconditioning aims at improving the
search direction yi in (4.2) by moving it closer to the error direction xi− x; further explanations can be found in [4],
[5], [6], and [8].

In JCPG the two components are blend as follows. For each Ritz vector xi
j in the current subspace V i a new search

direction yi
j is computed by Jacobi-conjugating the preconditioned gradient T gi of the Rayleigh quotient λ(x) at x = xi

j

to the previous search directions yi−1
j . The new search directions that are almost linearly dependent are discarded as

described in [8]. Assuming that this leaves k≤m search directions, the Rayleigh-Ritz procedure is then applied in the
(m+k)-dimensional trial subspace that spans the Ritz vectors xi

j and the orthogonalized search directions. The m Ritz
vectors corresponding to the leftmost Ritz values in this trial subspace define the new subspace iterate V i.

The computation has two phases. In the first phase, the eigenpairs are tested for convergence from the left. Those
that are accepted as converged remain unchanged for the rest of the phase. The new search vectors continue to be
B-orthogonalized with respect to the converged eigenvectors, which is the only role the latter play in the computation
of the remaining eigenpairs. The first phase completes when all wanted eigenpairs have been accepted. The second
phase is like the first phase except that it starts from the vectors in X at the end of the first phase and the computation
terminates when all the eigenpairs have been accepted as converged.

Further details and the theoretical and numerical investigation of the convergence properties of the JCPG method
can be found in [4], [5], [6], and [8].

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 11

HSL EA19 v1.4.2
Documentation date: May 30, 2023



HSL EA19 HSL 2007

4.2 Error estimation

4.2.1 Standard problem

The residual stopping criterion (3. in §2.7) is motivated by the well-known fact that for any approximate eigenpair
{λ̃, x̃} there exists an eigenvalue λ of A such that

|λ̃−λ| ≤ ‖Ax̃− λ̃x̃‖
‖x̃‖

(4.3)

(see e.g. [9]).
If control%err est = 1, then the error estimates for the eigenvalues are based on the so-called Lehmann bounds.

A detailed discussion on these can be found in [7], where it is shown, in particular, that if, for some k > 1, the (k−1)-th
Ritz value in a given trial subspace is strictly left of the exact eigenvalue λk, then each of the leftmost k−1 eigenvalues
of A is right of the respective eigenvalue λ̂ j of the matrix

Â = Λ̃k−ST
k Sk, (4.4)

where Λ̃k is a diagonal matrix with the k− 1 leftmost Ritz values λ̃ j on the diagonal, and the columns of Sk are the

respective residual vectors r j = Ax̃ j− λ̃ j x̃ j divided by
√

λk− λ̃ j. The minimax principle for eigenvalues implies that

λ j ≤ λ̃ j, and thus the difference λ̃ j− λ̂ j estimates the eigenvalue error λ̃ j−λ j. Following the recommendation of [7],
we replace the unknown value λk with λ̃k, and select the maximal k ≤ m for which the distance between λ̃k−1 and λ̃k
exceeds the sum of the absolute error tolerance for eigenvalues and ‖r j‖2, j = 1, . . . ,k−1; see the cited paper for the
justification of such an approach. If the difference λ̃ j− λ̂ j is close to the machine accuracy, it may be too polluted by
round-off errors to rely upon. In such case, the following estimate implied by the asymptotics of Lehmann bounds λ̂ j
(see the cited paper) is used instead:

λ̃ j−λ j ≤ δ j ≈
‖r j‖2

λ̃k−λ j
(4.5)

(in the case at hand, the difference between δ j and the ratio in the right-hand side is of the order of machine accuracy
squared). The estimate (4.5) allows one to reach beyond the machine accuracy in the following sense. The relative
accuracy in eigenvalues is roughly the square of that for eigenvectors owing to the fact that the Rayleigh quotient
is stationary on eigenvectors. Hence, one can compute eigenvectors to single accuracy and then compute Rayleigh
quotients for them in double accuracy, thus achieving nearly double accuracy in respective eigenvalues (see §5.2).

The eigenvector errors are estimated based on the Davis-Kahan inequality:

min
x∈Xk−1

sin{x̃ j;x} ≤
‖r j‖

λk− λ̃ j
≈
‖r j‖

λ̃k− λ̃ j
, (4.6)

where Xk−1 is the invariant subspace corresponding to k−1 leftmost eigenvalues.
If control%err est = 2, then the eigenvalue error estimates are based on the eigenvalue decrements history (see

[8] for details). Unlike the residual estimates mentioned in this section, they are not guaranteed to be upper bounds.
However, the numerical tests have demonstrated that these error estimates are significantly more accurate, i.e. closer
to the actual error than the other estimates. Furthermore, they straightforwardly apply to the generalized case as well.
The eigenvector errors are estimated via eigenvalue errors using the results of [3] (see [8] for details).

4.2.2 Generalized problem

In the case of the generalized eigenvalue problem (1.1), all of the residual norms in the previous section must be
replaced with ‖ · ‖B−1 -norm of the residual Axi

j−λi
jBxi

j or its upper estimate, e.g. β
−1/2
1 ‖ · ‖, where β1 is the smallest
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eigenvalue of B. Hence, if β1 is known, then the error tolerances for eigenvalues and eigenvectors must be multiplied
by β1 and

√
β1 respectively. If no estimate for ‖ · ‖B−1 -norm is available, then the use of non-zero residual tolerances

and control%err est = 1 is not recommended. The user should also bear in mind that the residual estimates we
discuss, especially (4.3), may overestimate the actual error considerably, due to the use of the Euclidean norm of the
residual, which is too strong a norm for it in the case where A is a discretization of a differential operator.

5 EXAMPLE OF USE

5.1 A simple example

The following code computes the leftmost 8 eigenvalues of the matrix of order 64 that approximates the Laplacian
operator on an 8×8 grid.

program spec_test ! Laplacian on a square grid
use hsl_ea19_double
implicit none
integer, parameter :: l = 8 ! No. of variables on each side
integer, parameter :: n = l*l ! No. of variables
integer,parameter :: nep = 8 ! No. of eigenpairs wanted
integer,parameter :: m = 10 ! dimension of the iterated space
type(ea19_control) :: control ! control parameters
type(ea19_keep) :: keep ! private data
type(ea19_info) :: info ! error info
double precision :: X(n,m), lambda(m) ! eigenvectors and eigenvalues
double precision, allocatable :: W(:,:,:) ! work array
double precision :: V(2*m,2*m,2), U(2*m) ! work arrays
integer :: err ! error flag
integer :: ido, nvec, arg, res ! reverse communication data
integer :: kw ! final extent of W
integer :: i, j ! do indices

call ea19_initialize( control, .true. , n, m, nep, kw, keep, err )
allocate( W( n, m, kw ) )
ido = 0
do ! reverse communication loop

call ea19_solve( control, lambda, X, W, V, U, ido, nvec, arg, res, &
keep, info )

if (ido==-1) exit
if (ido==1) then

do j = 1, nvec
if ( arg > 0 ) call laplace(l,W(:,j,arg),W(:,j,res))
if ( arg <= 0 ) call laplace(l,X(:,j),W(:,j,res))

end do
else

if ( arg > 0 ) W(:,:,res) = W(:,:,arg)
if ( arg <= 0 ) W(:,:,res) = X(:,:)

end if
end do
write (6, ’(a,i4,a,/,a)’) ’After’, info%iteration, &
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’ iterations, eigenvalues, residual norms, and’, &
’ estimated eigenvalue errors are:’

write (6, ’(/8x,a)’) ’ lambda |r| est. error’
do i = 1, nep

write (6, ’(1x, f18.10, 3es10.0)’) lambda(i), info%res_norms(i), &
info%err_lmd(i)

end do
call ea19_terminate( keep,info )
deallocate( W )

end program spec_test

subroutine laplace(l,x,Ax)
! Multiply x by Laplacian matrix for a square of side l.

integer, intent(in) :: l
double precision, intent(in) :: x(l,l)
double precision, intent(out) :: Ax(l,l)

integer :: i,j
double precision :: z

do i = 1,l
do j = 1,l

z = 4d0*x(i,j)
if(i>1) z = z - x(i-1,j)
if(j>1) z = z - x(i,j-1)
if(i<l) z = z - x(i+1,j)
if(j<l) z = z - x(i,j+1)
Ax(i,j) = z

end do
end do

end subroutine laplace

This code produces the following output:

After 31 iterations the computed eigenvalues are:
lambda

0.2412295169
0.5885258722
0.5885258722
0.9358222275
1.1206147584
1.1206147584
1.4679111138
1.4679111138

5.2 Restarting in higher precision

The following code performs the same computation in single precision and then restarts from the same vectors com-
puting in double precision with a zero limit on the number of iterations. The second computation should improve the
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eigenvalues to the accuracy anticipated in the first computation. We verify this by comparing them with the analytic
values.

module constants
integer, parameter :: l = 8 ! No. of variables on each side
integer, parameter :: n = l*l ! No. of variables
integer,parameter :: nep = 8 ! No. of eigenpairs wanted
integer,parameter :: m = 10 ! dimension of the iterated space

end module constants

program spec_test ! Laplacian on a square grid
use constants
use hsl_ea19_single
implicit none
type(ea19_control) :: control ! control parameters
type(ea19_keep) :: keep ! private data
type(ea19_info) :: info ! error info
real :: X(n,m), lambda(m) ! eigenvectors and eigenvalues
double precision :: dlambda(m) ! refined eigenvalues
real, allocatable :: W(:,:,:) ! work array
real :: V(2*m,2*m,2), U(2*m) ! work arrays
integer :: err ! error flag
integer :: ido, nvec, arg, res ! reverse communication data
integer :: kw ! final extent of W
integer :: i, j ! do indices

call ea19_initialize( control, .true. , n, m, nep, kw, keep, err )
allocate( W( n, m, kw ) )
ido = 0
do ! reverse communication loop

call ea19_solve( control, lambda, X, W, V, U, ido, nvec, arg, res, &
keep, info )

if (ido==-1) exit
if (ido==1) then

do j = 1, nvec
if ( arg > 0 ) call laplace(l,W(:,j,arg),W(:,j,res))
if ( arg <= 0 ) call laplace(l,X(:,j),W(:,j,res))

end do
else

if ( arg > 0 ) W(:,:,res) = W(:,:,arg)
if ( arg <= 0 ) W(:,:,res) = X(:,:)

end if
end do
write (6, ’(a,i3,a,/,a)’) ’After’, info%iteration, &

’ single-precision iterations, eigenvalues, residual norms, and’, &
’ estimated eigenvalue errors are:’

write (6, ’(8x,a)’) ’ lambda |r| est. error’
do i = 1, m

write (6, ’(1x, f18.6, 3es10.0)’) lambda(i), info%res_norms(i), &
info%err_lmd(i)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 15

HSL EA19 v1.4.2
Documentation date: May 30, 2023



HSL EA19 HSL 2007

end do
call ea19_terminate( keep,info )
deallocate( W )
call refine(X, dlambda)
call check (dlambda)

contains
subroutine laplace(l,x,Ax)
! Multiply x by Laplacian matrix for a square of side l.

integer, intent(in) :: l
real, intent(in) :: x(l,l)
real, intent(out) :: Ax(l,l)

integer :: i,j
real :: z

do i = 1,l
do j = 1,l

z = 4.0*x(i,j)
if(i>1) z = z - x(i-1,j)
if(j>1) z = z - x(i,j-1)
if(i<l) z = z - x(i+1,j)
if(j<l) z = z - x(i,j+1)
Ax(i,j) = z

end do
end do

end subroutine laplace

subroutine check (dlambda)
double precision :: dlambda(nep)
double precision :: theta, lmda(n)
integer :: index(n),ij
ij = 0
theta = atan(1D0)*4d0/(1d0+l)
do i = 1, l

do j = 1, l
ij = ij+1 ! spectrum of a 2D Laplacian
lmdA(ij) = 4-2*cos(i*theta)-2*cos(j*theta)
index(ij) = ij

end do
end do
call kb07ad(lmdA,n,index) ! Sort into ascending order
write (6, ’(/a/8x,a)’) ’Actual errors are:’,’ dlambda error’
do i = 1, nep

write (6, ’(1x, f18.10, es10.0)’) dlambda(i), dlambda(i)-lmdA(i)
end do

end subroutine check

end program spec_test
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subroutine refine(XX, dlambda) ! Laplacian on a square grid
use constants
use hsl_ea19_double
implicit none
real :: XX(n,m) ! Initial vectors
double precision :: dlambda(m) ! eigenvalues

type(ea19_control) :: control ! control parameters
type(ea19_keep) :: keep ! private data
type(ea19_info) :: info ! error info
double precision :: X(n,m) ! eigenvectors
double precision, allocatable :: W(:,:,:) ! work array
double precision :: V(2*m,2*m,2), U(2*m) ! work arrays
integer :: err ! error flag
integer :: ido, nvec, arg, res ! reverse communication data
integer :: kw ! final extent of W
integer :: i, j ! do indices

call ea19_initialize( control, .true. , n, m, nep, kw, keep, err )
control%user_X = m
control%max_it = 0
allocate( W( n, m, kw ) )
ido = 0
X(:,:) = XX(:,:)
do ! reverse communication loop

call ea19_solve( control, dlambda, X, W, V, U, ido, nvec, arg, res, &
keep, info )

if (ido==-1) exit
if (ido==1) then

do j = 1, nvec
if ( arg > 0 ) call laplace(l,W(:,j,arg),W(:,j,res))
if ( arg <= 0 ) call laplace(l,X(:,j),W(:,j,res))

end do
else

if ( arg > 0 ) W(:,:,res) = W(:,:,arg)
if ( arg <= 0 ) W(:,:,res) = X(:,:)

end if
end do
write (6, ’(/,a,i3,a,/,a)’) ’After’, info%iteration, &

’ double-precision iterations, eigenvalues, residual norms, and’, &
’ estimated eigenvalue errors are:’

write (6, ’(8x,a)’) ’ dlambda |r| est. error’
do i = 1, nep

write (6, ’(1x, f18.10, 3es10.0)’) dlambda(i), info%res_norms(i), &
info%err_lmd(i)

end do
call ea19_terminate( keep,info )
deallocate( W )

contains
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subroutine laplace(l,x,Ax)
! Multiply x by Laplacian matrix for a square of side l.

integer, intent(in) :: l
double precision, intent(in) :: x(l,l)
double precision, intent(out) :: Ax(l,l)

integer :: i,j
double precision :: z

do i = 1,l
do j = 1,l

z = 4.0*x(i,j)
if(i>1) z = z - x(i-1,j)
if(j>1) z = z - x(i,j-1)
if(i<l) z = z - x(i+1,j)
if(j<l) z = z - x(i,j+1)
Ax(i,j) = z

end do
end do

end subroutine laplace

end subroutine refine

This code produces the following output:

After 18 single-precision iterations, eigenvalues, residual norms, and
estimated eigenvalue errors are:

lambda |r| est. error
0.241230 1.E-05 1.E-10
0.588526 2.E-05 4.E-10
0.588526 1.E-05 1.E-10
0.935822 1.E-05 3.E-10
1.120615 5.E-06 5.E-11
1.120615 5.E-06 5.E-11
1.467911 4.E-05 3.E-09
1.467911 4.E-05 5.E-09
1.773319 9.E-04 9.E-10
1.773318 3.E-05 3.E-05

After 0 double-precision iterations, eigenvalues, residual norms, and
estimated eigenvalue errors are:

dlambda |r| est. error
0.2412295169 1.E-05 1.E-05
0.5885258722 1.E-05 1.E-05
0.5885258724 2.E-05 2.E-05
0.9358222276 1.E-05 1.E-05
1.1206147584 8.E-07 8.E-07
1.1206147584 7.E-06 7.E-06
1.4679111138 7.E-06 7.E-06
1.4679111149 5.E-05 5.E-05

Actual errors are:
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dlambda error
0.2412295169 2.E-11
0.5885258722 3.E-11
0.5885258724 2.E-10
0.9358222276 4.E-11
1.1206147584 2.E-13
1.1206147584 1.E-11
1.4679111138 2.E-11
1.4679111149 1.E-09
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