
HSL MC69
C INTERFACE HSL

1 SUMMARY

HSL MC69 offers routines for converting matrices held in a number of sparse matrix formats to the compressed
sparse column (CSC) format used by many HSL routines. This format requires the entries within each column of A
to be ordered by increasing row index. For symmetric, skew symmetric or Hermitian matrices, only entries in the
lower triangle are held. This format is the one used by many of the recent HSL packages; we shall refer to it as the
standard HSL format.

Routines are offered for converting matrices held in lower or upper compressed sparse column format or in lower
or upper compressed sparse row format or in coordinate format, and for verification and correction of matrices
believed to already be in standard HSL format. The conversion routines check the user-supplied data for errors and
handle duplicate entries (they are summed) and out-of-range entries (they are discarded).

ATTRIBUTES — Version: 1.4.2 (28 July 2022). Types: Real (single, double), Complex (single, double). Calls:
None Original date: January 2011. Origin: J.D. Hogg, Rutherford Appleton Laboratory. Language: Fortran 2003
subset (F95 + TR15581 + C interoperability). Interfaces: Fortran, C.

2 HOW TO USE THE PACKAGE

2.1 C interface to Fortran code

This package is written in Fortran and a wrapper is provided for C programmers. This wrapper only implements a
(large) subset of the full functionality available via the Fortran interface.

The wrapper will automatically convert between 0-based (C) and 1-based (Fortran) indexing (see Section 2.4), so
may be used transparently from C. This conversion involves both time and memory overheads that may be avoided by
supplying data that is already stored using 1-based indexing. The conversion may be disabled by setting the argument
findex to a non-zero value and supplying all data using 1-based indexing. Except where stated, this document
describes all arrays in 0-based (C) indexing only.

The wrapper uses the Fortran 2003 interoperability features. Matching C and Fortran compilers must be used,
for example gcc and gfortran, or icc and ifort. If the Fortran compiler is not used to link the user’s program, then
additional Fortran compiler libraries may need to be linked explicitly.

2.2 Routines available

A verification routine for matrices in standard HSL format can be found on page 4. Routines for handling user-supplied
matrices that are held in other formats may be found as specified below. The section on each format is designed to
be self contained, thus users only need to read the section relevant to them.

Input format matrix type Page
Compressed sparse column All 7
Upper compressed sparse column Symmetric, skew symmetric, Hermitian 11
Full compressed sparse column Symmetric, skew symmetric, Hermitian 14
Compressed sparse row All 17
Upper compressed sparse row Symmetric, skew symmetric, Hermitian 20
Compressed sparse row Symmetric, skew symmetric, Hermitian 23
Coordinate All 26

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 1

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.3 The header file

Access to the package requires inclusion of a header file

Single precision version
#include "hsl mc69s.h"

Double precision version
#include "hsl mc69d.h"

Complex version
#include "hsl mc69c.h"

Double complex version
#include "hsl mc69z.h"

If more than one version is to be used within the same code, one of the postfixes s, d, c, or z must be added to the
end of all subroutine calls. For example:

mc69_print_s(...) /* Single precision call to mc69_print() */
mc69_print_d(...) /* Double precision call to mc69_print() */
mc69_print_c(...) /* Complex call to mc69_print() */
mc69_print_z(...) /* Double Complex call to mc69_print() */

2.3.1 Package types

The complex versions require C99 support for the double complex and float complex types. The real versions do
not require C99 support.

We use the following type definitions in the different versions of the package:

Single precision version

typedef float pkgtype

Double precision version

typedef double pkgtype

Complex version

typedef float complex pkgtype

Double complex version

typedef double complex pkgtype

2.4 Fortran indexing

If findex is non-zero, Fortran indexing is used to store the matrix. This means that any integer values stored in an
array that is passed to a function must be 1 greater than for C indexing. However, C indexing must still be used to
access the array.

Consider the following matrix: (
1 3

2 4

)
It may be stored in CSC format as follows:

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 2

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69
findex=0 (C)

ptr[0] = 0
ptr[1] = 1
ptr[2] = 2
ptr[3] = 4

row[0] = 0 val[0] = 1
row[1] = 1 val[1] = 2
row[2] = 0 val[2] = 3
row[3] = 1 val[3] = 4

findex=1 (Fortran)
ptr[0] = 1
ptr[1] = 2
ptr[2] = 3
ptr[3] = 5

row[0] = 1 val[0] = 1
row[1] = 2 val[1] = 2
row[2] = 1 val[2] = 3
row[3] = 2 val[3] = 4

2.5 Matrix type constants

The following enumeration is defined in the header file:

typedef enum hsl matrix type {
/* Undefined or Unknown matrix */
HSL MATRIX UNDEFINED = 0,

/* Real matrices */
HSL MATRIX REAL RECT = 1, /* real rectangular */
HSL MATRIX REAL UNSYM = 2, /* real unsymmetric */
HSL MATRIX REAL SYM PSDEF = 3, /* real symmetric, positive definite */
HSL MATRIX REAL SYM INDEF = 4, /* real symmetric, indefinite */
HSL MATRIX REAL SKEW = 6, /* real skew symmetric */

/* Complex matrices */
HSL MATRIX CPLX RECT = -1, /* complex rectangular */
HSL MATRIX CPLX UNSYM = -2, /* complex unsymmetric */
HSL MATRIX CPLX HERM PSDEF = -3, /* complex Hermitian, positive definite */
HSL MATRIX CPLX HERM INDEF = -4, /* complex Hermitian, indefinite */
HSL MATRIX CPLX SYM = -5, /* complex symmetric */
HSL MATRIX CPLX SKEW = -6 /* complex skew symmetric */

} hsl matrix type;

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.6 Matrices held in standard HSL format

The following routines handle a matrix A held in standard HSL format (that is, CSC format with the entries within
each column ordered by increasing row index). For symmetric, skew symmetric or Hermitian matrices, only the lower
triangle is held. There is no requirement that zero entries on the diagonal be explicitly included.

A valid matrix of this form has no out-of-range or duplicate entries, and is stored as a series of compressed columns
using the following data:

m is an int scalar that holds the number of rows in A.

n is an int scalar that holds the number of columns in A.

ptr is a rank-one int array. The first n values must be set such that ptr[j] holds the position in row of the first entry
in column j and ptr[n] must be the total number of entries.

row is a rank-one int array. The first ptr[n] entries hold the row indices of the entries of A, with the row indices for
the entries in first column preceding those for the second, and so on. The indices within each column must be
in increasing order.

If the values are required in addition to the matrix pattern, the following array is used:

val is a rank-one pkgtype array. val[k] must hold the value of the entry in row[k].

2.6.1 To verify a matrix is in standard HSL format

To verify a matrix is in standard HSL format, or to identify why it is not, the user may make the following call.
Note that this routine does not handle duplicates or out-of-range entries (they are flagged as errors). It is intended for
debugging rather than for use in a performance code.

int mc69_verify(const int unit, const hsl_matrix_type type, const int findex,
const int m, const int n, const int ptr[], const int row[], const pkgtype val[],
int *more);

Arguments:

unit holds the Fortran unit for output. If unit ≥ 0, error messages are printed on unit unit, otherwise they are
suppressed.

type describes the type of the matrix. It must have one of the values given in Section 2.5. If it has value 0
(HSL MATRIX UNDEFINED) requirements that depend on the matrix type will not be checked. For positive-definite
matrices, the positive-definite property is not tested (except that diagonal entries must be present and positive).

findex specifies the findex array index. If the arrays ptr and row start numbering at 0 in the C style, findex must be
set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must be non-zero. If findex=0,
an extra copy of ptr and row is taken internally by the function.

m, n, ptr and row must be set by the user to hold A in standard HSL format as described in Section 2.6.

val may be NULL. If it is not NULL, val[k] must hold the value of the entry in row[k].

more is used to provide further information if the matrix is not in HSL standard format; see list of error returns from
this function.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 4

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

Return value:
A value of 0 indicates the matrix is in standard HSL format. Negative values are associated with an error, and will
take one of the following values:

-1 Allocation error. more will be set to the Fortran stat value from the failed allocate.

-2 Invalid value of type.

-3 m<0 or n<0.

-4 |type|> 1 (square matrix) but m 6=n.

-5 ptr[0]<0. more is set to ptr[0].

-6 ptr is not monotonically increasing. more is set to the least value of i such that ptr[i] < ptr[i-1].

-7 Entries within one or more columns are not sorted by increasing row index. more is set to the first index such that
row[more] < row[more-1] and both are in the same column.

-8 row contains one or more out-of-range entries. more holds the index of the first out-of-range entry in row.

-9 row contains one or more duplicate entries. more is set such that row[more] and row[more+1] are the first pair
of duplicate entries.

-11 |type|= 3 (positive-definite case) but one or more diagonal entries are missing or are not positive. more is set to
the index of the first column with such a diagonal entry.

-12 type =−3 or -4 (Hermitian case) but one or more diagonal entries have non-zero imaginary part. more is set to
the index of the first column with such a diagonal entry.

-14 matrix is symmetric, skew-symmetric or Hermitian and an entry is present in the upper triangle or on the diagonal
of a skew-symmetric matrix. more is set so that row[more] is the first such entry.

2.6.2 To print a matrix in standard HSL format

To print a matrix in standard HSL format (or print a summary of one), the user may call mc69 print. Note that output
will use Fortran numbering.

void mc69_print(const int unit, const int lines, const hsl_matrix_type type,
const int findex, const int m, const int n, const int ptr[], const int row[],
const pkgtype val[])

Arguments:
unit holds the Fortran unit for output. If unit ≥ 0, error messages are printed on unit unit, otherwise they are

suppressed.

lines controls the number of lines of output used. If lines≥ 0, a summary of the matrix will be printed of not more
than lines lines. Otherwise, the whole matrix will be printed.

type describes the type of the matrix. It must have one of the values given in Section 2.5.

findex specifies the findex array index. If the arrays ptr and row start numbering at 0 in the C style, findex must be
set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must be non-zero. If findex=0,
an extra copy of ptr and row is taken internally by the function.

m, n, ptr and row must be set by the user to hold A in standard HSL format as described in Section 2.6.

val may be NULL. If it is not NULL, it must be of size ptr[n] and val[k] must hold the value of the entry in
row[k].

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 5

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.6.3 Example

Usage of the routines in this section will be demonstrated using the following matrix

A =


1.0 3.0 −2.0
3.0 4.0 5.0

5.0 6.0
−2.0 6.0 7.0

 .

The following code reads a matrix in HSL standard form, verifies the matrix is a valid using mc69 verify, and then
displays the matrix using mc69 print. If provided with the following input (matching the matrix A above) on stdin,
the code produces the following output.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

2.7 Compressed sparse column format

The following routines handle a matrix stored in compressed sparse column format, with entries only in the lower
triangle for symmetric, skew-symmetric or Hermitian matrices. Entries within each column of the user-supplied
matrix do not need to be ordered. There is no requirement that zero entries on the diagonal be explicitly included. For
a skew-symmetric matrix, no diagonal entries are held.
The input matrix is stored as a series of compressed columns using the following data:

m is a scalar of type int that holds the number of rows of A.

n is a scalar of type int that holds the number of columns of A.

ptr is a rank-one array of type int. The first n values must be set such that ptr[j] holds the position in row of the
first entry in column j and ptr[n] must be the total number of entries.

row is a rank-one array of type INTEGER. The first ptr[n] entries hold the row indices of the entries, with the row
indices for the entries in first column preceding those for the second, and so on. The indices within each column
may be unordered.

If the values are required in addition to the matrix pattern, the following array is used:

val is a rank-one array of package type. val[k] must hold the value of the entry in row[k].

2.7.1 To perform an in-place conversion from compressed sparse column format to standard HSL format

To convert a matrix held in compressed sparse column format to standard HSL format in-place (that is, the user’s
data is overwritten), the user may make a call of the following form. This routine checks the user’s data and handles
duplicate entries (they are summed) and out-of-range entries (they are removed). For symmetric, skew-symmetric
and Hermitian matrices, entries in the upper triangle are removed. For skew-symmetric matrices only, entries on the
diagonal are treated as out-of-range entries, and are removed.

int mc69_cscl_clean(const int unit, const hsl_matrix_type type, const int findex,
const int m, const int n, int ptr[], int row[], pkgtype val[],
int *noor, int *ndup, int *lmap, int *map[])

Arguments:
unit holds the Fortran unit number for output. If unit ≥ 0, error and warning messages are written to unit unit,

otherwise they are suppressed. Note that any warning or output messages will refer to the Fortran numbering
scheme (as if findex6=0), regardless of the value of findex.

type describes the type of matrix. It must take one of the values described in Section 2.5. If this argument has value
0 (HSL MATRIX UNDEFINED), the matrix will be treated as if it were rectangular.

findex specifies the findex array index. If the arrays ptr and row start numbering at 0 in the C style, findex must be
set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must be non-zero. If findex=0,
an extra copy of ptr and row is taken internally by the function.

m, n, ptr and row must be set by the user to hold A in compressed sparse column format, as described in Section 2.7.
On exit, ptr and row will have been modified to hold the matrix in standard HSL format.

val may be NULL. If not NULL, on input the first ptr[n] entries must be set so that val[k] holds the value of the
entry in row[k]. On exit, it will hold the (potentially modified) values of the matrix entries corresponding to
those of the array row.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 7

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

noor contains, on exit, the number of out-of-range entries that were discarded.

ndup contains, on exit, the number of duplicate entries that were summed.

lmap may be NULL. If it is not null then, on entry, *lmap must be the size of the array map[], and on exit it will give
the number of entries in map[] that are actually used. If lmap is NULL, map must also be NULL.

map may be NULL. If it is not NULL then it must point to an array of size at least lmap. It should be used if the user
wishes to change the values of the entries of A following the call to mc69 cscl clean, and should be passed
unaltered to any subsequent calls to mc69 set values. A detailed description of the output format is given in
Section 4.1. If map is NULL, lmap must also be NULL.

Return value:
On exit, a value of 0 indicates successful conversion. Positive values indicate successful conversion but a warning was
issued. Negative values are associated with an error; see Section 2.7.4 for details.

2.7.2 To perform an out-of-place conversion from compressed sparse column format to standard HSL format

To convert a matrix held in lower compressed sparse column format to standard HSL format, the user may make a call
of the following form. This routine leaves the user’s data unchanged. This routine checks the user’s data and handles
duplicate entries (they are summed) and out-of-range entries (they are discarded). For symmetric, skew-symmetric
and Hermitian matrices, entries in the upper triangle are discarded. For skew-symmetric matrices only, entries on the
diagonal are treated as out-of-range entries, and are discarded.

int mc69_cscl_convert(const int unit, const hsl_matrix_type type,
const int findex, const int m, const int n, const int ptr_in[],
const int row_in[], const pkgtype val_in[], int ptr_out[],
const int lrow, int row_out[], pkgtype val_out[], int *noor,
int *ndup, int *lmap, int map[]);

Arguments:
unit holds the Fortran unit number for output. If unit ≥ 0, error and warning messages are written to unit unit,

otherwise they are suppressed. Note that any warning or output messages will refer to the Fortran numbering
scheme (as if findex 6=0), regardless of the value of findex.

type describes the type of matrix. It must take one of the values described in Section 2.5. If this argument has value
0 (HSL MATRIX UNDEFINED), the matrix will be treated as if it were rectangular.

findex specifies the findex array index. If the arrays ptr, row, ptr out and row out start numbering at 0 in the C
style, findex must be set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must be
non-zero. If findex=0, an extra copy of ptr, row, ptr out and row out is taken internally by the function.

m, n, ptr in and row in must be set by the user to hold A in compressed sparse column format, as described in
Section 2.7.

val in may be NULL. If it is not NULL, on input the first ptr in[n] entries must be set so that val in[k] holds
the value of the entry col in[k]. If val in is NULL, val out must also be NULL.

lrow specifies the length of row out and (if it is not NULL) val out. It must be at least as large as the number of
entries in the output matrix. A safe upper bound on this value is the number of entries in the input matrix.

ptr out and row out are rank-one arrays. ptr out is of size n+1 and row out of size lrow. On exit, they hold A in
HSL standard format, as described in Section 2.6.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

val out is an optional INTENT(OUT) rank-one allocatable array of package type. If not NULL, on exit it will
be allocated and the first ptr out[n] entries will be set such that val out[k] holds the value of the entry
row out[k]. If val out is NULL, val in must also be NULL.

noor contains, on exit, the number of out-of-range entries that were discarded.

ndup contains, on exit, the number of duplicate entries that were summed.

lmap may be NULL. If it is not null then, on entry, *lmap must be the size of the array map[], and on exit it will give
the number of entries in map[] that are actually used. If lmap is NULL, map must also be NULL.

map may be NULL. If it is not NULL then it must point to an array of size at least lmap. It should be used if the user
wishes to change the values of the entries of A following the call to mc69 cscl convert, and should be passed
unaltered to any subsequent calls to mc69 set values. A detailed description of the output format is given in
Section 4.1. If map is NULL, lmap must also be NULL.

Return value:
On exit, a value of 0 indicates successful conversion. Positive values indicate successful conversion but a warning was
issued. Negative values are associated with an error; see Section 2.7.4 for details.

2.7.3 To set values of A following a conversion

The user may want to change the values of the entries of A following a successful call to mc69 cscl clean or
mc69 cscl convert. Alternatively, the user may want to include matrix values after a call to mc69 cscl clean
or mc69 cscl convert in which matrix values were not passed. This can be done by making a call of the following
form, however note that no checks are made on the values of the diagonal entries.

void mc69_set_values(const hsl_matrix_type type, const int lmap, const int map[],
const pkgtype val_in[], const int ne, pkgtype val_out[])}

Arguments:

type describes the type of matrix. It must be unchanged since the call to mc69 cscl clean or mc69 cscl convert
that generated map.

lmap must be unchanged since the call to mc69 cscl clean or mc69 cscl convert that generated map.

map must be unchanged since the call to mc69 cscl clean or mc69 cscl convert that generated it.

val in must have size at least the value of ptr[n] on the call to mc69 cscl clean (or ptr in[n] for a call to
mc69 cscl convert). It must be set by the user to hold the new values of the entries of A matching the original
matrix that was input to mc69 cscl clean or mc69 cscl convert.

ne must be set to the number of entries in the HSL standard form matrix. If using C indexing, this is ptr[n] on
exit from mc69 cscl clean or ptr out[n] on exit from mc69 cscl convert (if using Fortran based indexing,
subtract 1 from these values).

val out must have size at least ne. On exit, it contains the new values of A in standard HSL format, as described in
Section 2.6.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 9

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.7.4 Return codes

A successful return from a call to mc69 cscl clean or mc69 cscl convert is indicated by flag taking the value 0.
Possible negative values that are associated with an error are:

-1 Allocation error.

-2 Invalid value of type.

-3 m<0 or n<0.

-4 |type|> 1 (square matrix) but m 6=n.

-5 ptr[0]<0.

-6 ptr[] is not monotonic increasing.

-10 All entries for a column are out of range.

-11 |type|=3 (positive-definite case) but one or more diagonal entries are not positive.

-12 type =-3 or -4 (Hermitian case) but one or more entries on the diagonal have non-zero imaginary part.

-15 Only one of val in and val out is NULL.

-16 Only one of lmap and map is NULL.

Possible positive values are:

+1 Out-of-range indices found in row in.

+2 Duplicate indices found in row in.

+3 Both out-of-range and duplicate entries found.

+4 |type| 6= 3,6 and not all entries on the diagonal are present. (Note that no HSL package requires explicit zeros to
be on input on the diagonal.)

+5 |type| 6= 3,6 and not all entries on the diagonal are present and out-of-range and/or duplicate entries found. (Note
that no HSL package requires explicit zeros to be on input on the diagonal.)

2.7.5 Example

Usage of the routines in this section will be demonstrated using the following matrices

A =


1.0 3.0 −2.0
3.0 4.0 5.0

5.0 6.0
−2.0 6.0 7.0+2.0

 , B =


2.0 4.0 −3.0
4.0 6.0 6.0

6.0 7.0
−3.0 7.0 8.0−1.0

 .

The following code reads a matrix in Compressed Sparse Column form, and then performs an in-place conversion to
HSL standard form using mc69 cscl clean. If provided with the following input (matching the matrix A above) on
stdin, the code produces the following output.For an out-of-place conversion, the following code calling mc69 cscl convert may be used instead. In addition
to the initial conversion, a second set of values matching the same pattern is read. These values are then converted to
HSL standard form using mc69 set values. If provided with the following input (matching the matrices A and B
above) on stdin, the code produces the following output.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 10

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

2.8 Symmetric, skew symmetric and Hermitian matrices in upper compressed sparse column format

The following routines handle a symmetric, skew-symmetric or Hermitian matrix stored in upper compressed sparse
column format (only entries in the upper triangle are stored). Entries within each column of the user-supplied matrix
do not need to be ordered. There is no requirement that zero entries on the diagonal be explicitly included.
The input matrix is stored as a series of compressed columns using the following data:

n is a scalar of type int that holds the order of A.

ptr is a rank-one array of type int. The first n values must be set such that ptr[j] holds the position in row of the
first entry in column j and ptr[n] must be the total number of entries.

row is a rank-one array of type int. The first ptr[n] entries hold the row indices of the entries in the upper triangle
of A, with the row indices for the entries in the first column preceding those in the second, and so on. The
indices within each column may be unordered.

If the values are required in addition to the matrix pattern, the following array is used:

val is a rank-one array of package type. val[k] must hold the value of the entry in row[k].

2.8.1 To perform a conversion from upper compressed sparse column format to standard HSL format

To convert a symmetric, skew-symmetric or Hermitian matrix held in upper compressed sparse column format to
standard HSL format, the user may make a call of the following form. This routine checks the user’s data and handles
duplicate entries (they are summed) and out-of-range entries (they are discarded). Entries in the lower triangle are
discarded. For skew-symmetric matrices only, entries on the diagonal are treated as out-of-range entries, and are
discarded.

int mc69_cscu_convert(const int unit, const hsl_matrix_type type,
const int findex, const int n, const int ptr_in[],
const int row_in[], const pkgtype val_in[], int ptr_out[],
const int lrow, int row_out[], pkgtype val_out[], int *noor,
int *ndup, int *lmap, int map[])

Arguments:
unit holds the Fortran unit number for output. If unit ≥ 0, error and warning messages are written to unit unit,

otherwise they are suppressed. Note that any warning or output messages will refer to the Fortran numbering
scheme (as if findex6=0), regardless of the value of findex.

type describes the type of matrix. It must take one of the values described in Section 2.5 for a symmetric, skew-
symmetric or Hermitian matrix.

findex specifies the findex array index. If the arrays ptr in, row in, ptr out and row out start numbering at 0 in
the C style, findex must be set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must
be non-zero. If findex=0, an extra copy of ptr in, row in, ptr out and row out is taken internally by the
function.

n, ptr in and row in must be set by the user to hold A in upper compressed sparse row format, as described in
Section 2.8.

val in may be NULL. If not NULL, on input the first ptr in[n] entries must be set so that val in[k] holds the
value of the entry row in[k]. If val in is NULL, val out must also be NULL.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 11

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

lrow specifies the length of row out and (if it is not NULL) val out. It must be at least as large as the number of
entries in the output matrix. A safe upper bound on this value is the number of entries in the input matrix.

ptr out and row out are rank-one arrays. ptr out is of size n+1 and row out of size lrow. On exit, they hold A in
HSL standard format, as described in Section 2.6.

val out may be NULL. If not NULL, it should have size at least lrow. On exit the first ptr out[n] entries will be
set such that val out[k] holds the value of the entry row out[k]. If val out is NULL, val in must also be
NULL.

noor contains, on exit, the number of out-of-range entries that were discarded.

ndup contains, on exit, the number of duplicate entries that were summed.

lmap may be NULL. If it is not null then, on entry, *lmap must be the size of the array map[], and on exit it will give
the number of entries in map[] that are actually used. If lmap is NULL, map must also be NULL.

map may be NULL. If it is not NULL then it must point to an array of size at least lmap. It should be used if the user
wishes to change the values of the entries of A following the call to mc69 cscu convert, and should be passed
unaltered to any subsequent calls to mc69 set values. A detailed description of the output format is given in
Section 4.1. If map is NULL, lmap must also be NULL.

Return value:
A successful return is indicated by a value of 0. Possible negative values that are associated with an error are:

-1 Allocation error.

-2 Invalid value of type.

-3 n<0.

-5 ptr[0]<0.

-6 ptr[] is not monotonic increasing.

-10 All entries for a column are out of range.

-11 |type|=3 (positive-definite case) but one or more diagonal entries are not positive.

-12 type =-3 or -4 (Hermitian case) but one or more entries on the diagonal have non-zero imaginary part.

-15 Only one of val in and val out is NULL.

-16 Only one of lmap and map is NULL.

Possible positive values are:

+1 Out-of-range indices found in row in.

+2 Duplicate indices found in row in.

+3 Both out-of-range and duplicate entries found.

+4 |type| 6= 3,6 and not all entries on the diagonal are present. (Note that no HSL package requires explicit zeros to
be on input on the diagonal.)

+5 |type| 6= 3,6 and not all entries on the diagonal are present and out-of-range and/or duplicate entries found. (Note
that no HSL package requires explicit zeros to be on input on the diagonal.)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 12

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

2.8.2 To set values of A following a conversion

The user may want to change the values of the entries of A following a successful call to mc69 cscu convert.
Alternatively, the user may want to include matrix values after a call to mc69 cscu convert with matrix values
not not NULL. This can be done by making a call to mc69 set values, however note that no checks are made on the
values of the diagonal entries.

void mc69 set values(const hsl matrix type type, const int lmap, const int map[],
const pkgtype val in[], const int ne, pkgtype val out[]);

Arguments:
type describes the type of matrix. It must be unchanged since the call to mc69 cscu convert that generated map.

lmap must be unchanged since the call to mc69 cscu convert that generated map.

map must be unchanged since the call to mc69 cscu convert that generated it.

val in must have size at least the value of ptr in[n] on the call to mc69 cscu convert. It must be set by the user
to hold the new values of the entries of A matching the original matrix that was input to mc69 cscu convert.

ne must be set to the number of entries in the output matrix from the call to mc69 cscu convert. If using C indexing,
this is the value of ptr out[n] on exit from mc69 cscu convert (for Fortran indexing, subtract 1).

val out must have size at least the value of ptr out[n] on exit from mc69 cscu convert. On exit, it contains the
new values of A in standard HSL format, as described in Section 2.6.

2.8.3 Example

Usage of the routines in this section will be demonstrated using the following matrices

A =


1.0 3.0 −2.0
3.0 4.0 5.0

5.0 6.0
−2.0 6.0 7.0+2.0

 , B =


2.0 4.0 −3.0
4.0 6.0 6.0

6.0 7.0
−3.0 7.0 8.0−1.0

 .

The following code reads a matrix in upper Compressed Sparse Column form, and then converts it to HSL standard
format using mc69 cscu convert. In addition to the initial conversion, a second set of values matching the same
pattern is read. These values are then converted to HSL standard form using mc69 set values. If provided with the
following input (matching the matrices A and B above) on stdin, the code produces the following output.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 13

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.9 Symmetric, skew symmetric and Hermitian matrices in full compressed sparse column format

The following routines handle a symmetric, skew symmetric or Hermitian matrix stored in full compressed sparse
column format (entries in both the lower and upper triangles are supplied by the user). Entries within each column
of the user-supplied matrix do not need to be ordered. There is no requirement that zero entries on the diagonal be
explicitly included.
The input matrix is stored as a series of compressed columns using the following data:

n is a scalar of type INTEGER that holds the order of A.

ptr is a rank-one array of type INTEGER. The first n values must be set such that ptr[j] holds the position in row of
the first entry in column j and ptr[n] must be the total number of entries.

row is a rank-one array of type INTEGER. The first ptr[n] entries hold the row indices of the entries of A, with the
row indices for the entries in column 1 preceding those for column 2, and so on. If a non-diagonal entry (i, j) is
present, its counterpart (j, i) must also be present. The indices within each column may be unordered.

If the values are required in addition to the matrix pattern, the following array is used:

val is a rank-one array of package type. val[k] must hold the value of the entry in row[k].

2.9.1 To convert from full compressed sparse column format to standard HSL format

To convert a symmetric, skew-symmetric or Hermitian matrix held in full compressed sparse column format to
standard HSL format the user may make a call of the following form. This routine checks the user’s data and handles
duplicate entries (they are summed) and out-of-range entries (they are discarded). Entries in the lower triangle are
ignored, except to check that there are the same number of entries in both the lower and upper triangles. For skew-
symmetric matrices only, entries on the diagonal are treated as out-of-range and are discarded.

int mc69_csclu_convert(const int unit, const hsl_matrix_type type,
const int findex, const int n, const int ptr_in[],
const int row_in[], const pkgtype val_in[], int ptr_out[],
const int lrow, int row_out[], pkgtype val_out[], int *noor,
int *ndup, int *lmap, int map[]);

Arguments:
unit holds the Fortran unit number for output. If unit ≥ 0, error and warning messages are written to unit unit,

otherwise they are suppressed. Note that any warning or output messages will refer to the Fortran numbering
scheme (as if findex 6=0), regardless of the value of findex.

type describes the type of matrix. It must take one of the values described in Section 2.5 for a symmetric, skew-
symmetric or Hermitian matrix.

findex specifies the findex array index. If the arrays ptr in, row in, ptr out and row out start numbering at 0 in
the C style, findex must be set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must
be non-zero. If findex=0, an extra copy of ptr in, row in, ptr out and row out is taken internally by the
function.

n, ptr in and row in must be set by the user to hold A in full compressed sparse column format, as described in
Section 2.9.

val in may be NULL. If not NULL, the first ptr in[n] entries must be set so that val in[k] holds the value of the
entry row in[k]. If val in is NULL, val out must also be NULL.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 14

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

lrow specifies the length of row out and (if it is not NULL) val out. It must be at least as large as the number of
entries in the output matrix. A safe upper bound on this value is the number of entries in the input matrix.

ptr out and row out are rank-one arrays. ptr out is of size n+1 and row out of size lrow. On exit, they hold A in
HSL standard format, as described in Section 2.6.

val out may be NULL. If not NULL, it should have size at least lrow. On exit the first ptr out[n] entries are
set such that val out[k] holds the value of the entry row out[k]. If val out is NULL, val in must also be
NULL.

noor contains, on exit, the number of out-of-range entries that were discarded.

ndup contains, on exit, the number of duplicate entries that were summed.

lmap may be NULL. If it is not null then, on entry, *lmap must be the size of the array map[], and on exit it will give
the number of entries in map[] that are actually used. If lmap is NULL, map must also be NULL.

map may be NULL. If it is not NULL then it must point to an array of size at least lmap. It should be used if the user
wishes to change the values of the entries of A following the call to mc69 csclu convert, and should be passed
unaltered to any subsequent calls to mc69 set values. A detailed description of the output format is given in
Section 4.1. If map is NULL, lmap must also be NULL.

Return value:
A successful return indicated by value of 0 or above, with non-zero values indicating a warning. Possible negative
values that are associated with an error are:

-1 Allocation error.

-2 Invalid value of type.

-3 n<0.

-5 ptr[0]<0.

-6 ptr[] is not monotonic increasing.

-10 All entries for a column are out of range.

-13 Number of in-range entries in lower and upper triangles do not match.

-11 |type|=3 (positive-definite case) but one or more diagonal entries are not positive.

-12 type =-3 or -4 (Hermitian case) but one or more entries on the diagonal have non-zero imaginary part.

-15 Only one of val in and val out is NULL.

-16 Only one of lmap and map is NULL.

Possible positive values are:

+1 Out-of-range indices found in row in.

+2 Duplicate indices found in row in.

+3 Both out-of-range and duplicate entries found.

+4 |type| 6= 3,6 and not all entries on the diagonal are present. (Note that no HSL package requires explicit zeros to
be on input on the diagonal.)

+5 |type| 6= 3,6 and not all entries on the diagonal are present and out-of-range and/or duplicate entries found. (Note
that no HSL package requires explicit zeros to be on input on the diagonal.)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 15

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.9.2 To set values of A following a conversion

The user may want to change the values of the entries of A following a successful call to mc69 csclu convert.
Alternatively, the user may want to include matrix values after a call to mc69 csclu convert with matrix values not
not NULL. This can be done by making a call to mc69 set values, however note that no checks are made on the
values of the diagonal entries.

void mc69 set values(const hsl matrix type type, const int lmap, const int map[],
const pkgtype val in[], const int ne, pkgtype val out[]);

Arguments:
type describes the type of matrix. It must be unchanged since the call to mc69 csclu convert that generated map.

lmap must be unchanged since the call to mc69 csclu convert that generated map.

map must be unchanged since the call to mc69 csclu convert that generated it.

val in must have size at least the value of ptr in[n] on the call to mc69 csclu convert. It must be set by the user
to hold the new values of the entries of A matching the original matrix that was input to mc69 csclu convert.

ne must be set to the number of entries in the output matrix from the call to mc69 csclu convert. If using C
indexing, this is the value of ptr out[n] on exit from mc69 csclu convert (for Fortran indexing, subtract 1).

val out must have size at least the value of ptr out[n] on exit from mc69 csclu convert. On exit, it contains the
new values of A in standard HSL format, as described in Section 2.6.

2.9.3 Example

Usage of the routines in this section will be demonstrated using the following matrices

A =


1.0 3.0 −2.0
3.0 4.0 5.0

5.0 6.0
−2.0 6.0 7.0+2.0

 , B =


2.0 4.0 −3.0
4.0 6.0 6.0

6.0 7.0
−3.0 7.0 8.0−1.0

 .

The following code reads a matrix in full Compressed Sparse Column form, and then converts it to HSL standard
format using mc69 csclu convert. In addition to the initial conversion, a second set of values matching the same
pattern is read. These values are then converted to HSL standard form using mc69 set values. If provided with the
following input (matching the matrices A and B above) on stdin, the code produces the following output.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 16

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

2.10 Matrices in compressed sparse row format

The following routines handle a matrix stored in compressed sparse row format, with entries only in the lower triangle
for symmetric, skew-symmetric or Hermitian matrices. Entries within each row of the user-supplied matrix do not
need to be ordered. There is no requirement that zero entries on the diagonal be explicitly included.
The input matrix is stored as a series of compressed rows using the following data:

m is a scalar of type INTEGER that holds the number of rows of A.

n is a scalar of type INTEGER that holds the number of columns of A.

ptr is a rank-one array of type INTEGER. The first m values must be set such that ptr[j] holds the position in col of
the first entry in row j and ptr[m] must be the total number of entries.

col is a rank-one array of type INTEGER. The first ptr[m] entries hold the column indices of the entries in A, with the
column indices for the entries in row 0 preceding those for row 1, and so on. For symmetric, skew symmetric
and Hermitian matrices only entries in the lower triangle should be stored. The indices within each row may be
unordered.

If the values are required in addition to the matrix pattern, the following array is used:

val is a rank-one array of package type. val[k] must hold the value of the entry in col[k].

2.10.1 To perform a conversion from compressed sparse row format to standard HSL format

To convert a matrix held in compressed sparse row format to standard HSL format, the user may make a call of the
following form. This routine checks the user’s data and handles duplicate entries (they are summed) and out-of-range
entries (they are discarded). For symmetric, skew-symmetric and Hermitian matrices, entries in the upper triangle
are discarded as out-of-range. For skew-symmetric matrices only, entries on the diagonal are treated as out-of-range
entries, and are discarded.

int mc69_csrl_convert(const int unit, const hsl_matrix_type type,
const int findex, const int m, const int n, const int ptr_in[],
const int col_in[], const pkgtype val_in[], int ptr_out[],
const int lrow, int row_out[], pkgtype val_out[], int *noor,
int *ndup, int *lmap, int map[]);

Arguments:
unit holds the Fortran unit number for output. If unit ≥ 0, error and warning messages are written to unit unit,

otherwise they are suppressed. Note that any warning or output messages will refer to the Fortran numbering
scheme (as if findex6=0), regardless of the value of findex.

type describes the type of matrix. It must take one of the values described in Section 2.5. If this argument has value
0 (HSL MATRIX UNDEFINED), the matrix will be treated as if it were rectangular.

findex specifies the findex array index. If the arrays ptr in, col in, ptr out and row out start numbering at 0 in
the C style, findex must be set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must
be non-zero. If findex=0, an extra copy of ptr in, col in, ptr out and row out is taken internally by the
function.

m, n, ptr in and col in must be set by the user to hold A in compressed sparse row format, as described in Section 2.10.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 17

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

val in may be NULL. If not NULL, on input the first ptr in[m] entries must be set so that val in[k] holds the
value of the entry col in[k]. If val in is NULL, val out must also be NULL.

lrow specifies the length of row out and (if it is not NULL) val out. It must be at least as large as the number of
entries in the output matrix. A safe upper bound on this value is the number of entries in the input matrix.

ptr out and row out are rank-one arrays. ptr out is of size n+1 and row out of size lrow. On exit, they hold A in
HSL standard format, as described in Section 2.6.

val out may be NULL. If not NULL, it should have size at least lrow. On exit the first ptr out[n] entries will be
set such that val out[k] holds the value of the entry row out[k]. If val out is NULL, val in must also be
NULL.

noor contains, on exit, the number of out-of-range entries that were discarded.

ndup contains, on exit, the number of duplicate entries that were summed.

lmap may be NULL. If it is not null then, on entry, *lmap must be the size of the array map[], and on exit it will give
the number of entries in map[] that are actually used. If lmap is NULL, map must also be NULL.

map may be NULL. If it is not NULL then it must point to an array of size at least lmap. It should be used if the user
wishes to change the values of the entries of A following the call to mc69 csrl convert, and should be passed
unaltered to any subsequent calls to mc69 set values. A detailed description of the output format is given in
Section 4.1. If map is NULL, lmap must also be NULL.

Return value:
A successful return indicated by value of 0 or above, with non-zero values indicating a warning. Possible negative
values that are associated with an error are:

-1 Allocation error.

-2 Invalid value of type.

-3 m<0 or n<0.

-4 |type|> 1 (square matrix) but m 6=n.

-5 ptr[0]<0.

-6 ptr[] is not monotonic increasing.

-10 All entries for a row are out of range.

-11 |type|=3 (positive-definite case) but one or more diagonal entries are not positive.

-12 type =-3 or -4 (Hermitian case) but one or more entries on the diagonal have non-zero imaginary part.

-15 Only one of val in and val out is NULL.

-16 Only one of lmap and map is NULL.

Possible positive values are:

+1 Out-of-range indices found in row in.

+2 Duplicate indices found in row in.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 18

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

+3 Both out-of-range and duplicate entries found.

+4 |type| 6= 3,6 and not all entries on the diagonal are present. (Note that no HSL package requires explicit zeros to
be on input on the diagonal.)

+5 |type| 6= 3,6 and not all entries on the diagonal are present and out-of-range and/or duplicate entries found. (Note
that no HSL package requires explicit zeros to be on input on the diagonal.)

2.10.2 To set values of A following a conversion

The user may want to change the values of the entries of A following a successful call to mc69 csrl convert.
Alternatively, the user may want to include matrix values after a call to mc69 csrl convert with matrix values
not not NULL. This can be done by making a call to mc69 set values, however note that no checks are made on the
values of the diagonal entries.

void mc69 set values(const hsl matrix type type, const int lmap, const int map[],
const pkgtype val in[], const int ne, pkgtype val out[]);

Arguments:
type describes the type of matrix. It must be unchanged since the call to mc69 csrl convert that generated map.

lmap must be unchanged since the call to mc69 csrl convert that generated map.

map must be unchanged since the call to mc69 csrl convert that generated it.

val in must have size at least the value of ptr in[m] on the call to mc69 csrl convert. It must be set by the user
to hold the new values of the entries of A matching the original matrix that was input to mc69 csrl convert.

ne must be set to the number of entries in the output matrix from the call to mc69 csrl convert. If using C indexing,
this is the value of ptr out[n] on exit from mc69 csrl convert (for Fortran indexing, subtract 1).

val out must have size at least the value of ptr out[n] on exit from mc69 csrl convert. On exit, it contains the
new values of A in standard HSL format, as described in Section 2.6.

2.10.3 Example

Usage of the routines in this section will be demonstrated using the following matrices

A =


1.0 3.0 −2.0
3.0 4.0 5.0

5.0 6.0
−2.0 6.0 7.0+2.0

 , B =


2.0 4.0 −3.0
4.0 6.0 6.0

6.0 7.0
−3.0 7.0 8.0−1.0

 .

The following code reads a matrix in Compressed Sparse Row form, and then converts it to HSL standard format using
mc69 csrl convert. In addition to the initial conversion, a second set of values matching the same pattern is read.
These values are then converted to HSL standard form using mc69 set values. If provided with the following input(matching the matrices A and B above) on stdin, the code produces the following output.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 19

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.11 Symmetric, skew symmetric and Hermitian matrices in upper compressed sparse row format

The following routines handle symmetric, skew-symmetric of Hermitian matrices stored in upper compressed sparse
row format (with entries only in the upper triangle). Entries within each row of the user-supplied matrix do not need
to be ordered. There is no requirement that zero entries on the diagonal be explicitly included.
The input matrix is stored as a series of compressed rows using the following data:

n is a scalar of type int that holds the order of A.

ptr is a rank-one array of type int. The first n values must be set such that ptr[j] holds the position in col of the
first entry in row j and ptr[n] must be the total number of entries.

col is a rank-one array of type int. The first ptr[n] entries hold the column indices of the entries in A, with the
column indices for the entries in row 0 preceding those for row 1, and so on. For symmetric, skew symmetric
and Hermitian matrices only entries in the upper triangle should be stored. The indices within each row may be
unordered.

If the values are required in addition to the matrix pattern, the following array is used:

val is a rank-one array of package type. val[k] must hold the value of the entry in col[k].

2.11.1 To perform a conversion from upper compressed sparse row format to standard HSL format

To convert a matrix held in upper compressed sparse row format to standard HSL format, the user may make a call
of the following form. This routine checks the user’s data and handles duplicate entries (they are summed) and out-
of-range entries (they are discarded). Entries in the lower triangle are discarded. For skew-symmetric matrices only,
entries on the diagonal are treated as out-of-range entries, and are discarded.

int mc69_csru_convert(const int unit, const hsl_matrix_type type,
const int findex, const int n, const int ptr_in[],
const int col_in[], const pkgtype val_in[], int ptr_out[],
const int lrow, int row_out[], pkgtype val_out[], int *noor,
int *ndup, int *lmap, int map[])

Arguments:
unit holds the Fortran unit number for output. If unit ≥ 0, error and warning messages are written to unit unit,

otherwise they are suppressed. Note that any warning or output messages will refer to the Fortran numbering
scheme (as if findex 6=0), regardless of the value of findex.

type describes the type of matrix. It must take one of the values described in Section 2.5 for symmetric, skew-
symmetric or Hermitian matrices.

findex specifies the findex array index. If the arrays ptr in, col in, ptr out and row out start numbering at 0 in
the C style, findex must be set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must
be non-zero. If findex=0, an extra copy of ptr in, col in, ptr out and row out is taken internally by the
function.

n, ptr in and col in must be set by the user to hold A in upper compressed sparse row format, as described in
Section 2.11.

val in may be NULL. If not NULL, on input the first ptr in[n] entries must be set so that val in[k] holds the
value of the entry col in[k]. If val in is NULL, val out must also be NULL.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 20

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

lrow specifies the length of row out and (if it is not NULL) val out. It must be at least as large as the number of
entries in the output matrix. A safe upper bound on this value is the number of entries in the input matrix.

ptr out and row out are rank-one arrays. ptr out is of size n+1 and row out of size lrow. On exit, they hold A in
HSL standard format, as described in Section 2.6.

val out may be NULL. If not NULL, it should have size at least lrow. On exit the first ptr out[n] entries will be
set such that val out[k] holds the value of the entry row out[k]. If val out is NULL, val in must also be
NULL.

noor contains, on exit, the number of out-of-range entries that were discarded.

ndup contains, on exit, the number of duplicate entries that were summed.

lmap may be NULL. If it is not null then, on entry, *lmap must be the size of the array map[], and on exit it will give
the number of entries in map[] that are actually used. If lmap is NULL, map must also be NULL.

map may be NULL. If it is not NULL then it must point to an array of size at least lmap. It should be used if the user
wishes to change the values of the entries of A following the call to mc69 csru convert, and should be passed
unaltered to any subsequent calls to mc69 set values. A detailed description of the output format is given in
Section 4.1. If map is NULL, lmap must also be NULL.

Return value:
A successful return indicated by value of 0 or above, with non-zero values indicating a warning. Possible negative
values that are associated with an error are:

-1 Allocation error.

-2 Invalid value of type.

-3 n<0.

-5 ptr[0]<0.

-6 ptr[] is not monotonic increasing.

-10 All entries for a row are out of range.

-11 |type|=3 (positive-definite case) but one or more diagonal entries are not positive.

-12 type =-3 or -4 (Hermitian case) but one or more entries on the diagonal have non-zero imaginary part.

-15 Only one of val in and val out is NULL.

-16 Only one of lmap and map is NULL.

Possible positive values are:

+1 Out-of-range indices found in row in.

+2 Duplicate indices found in row in.

+3 Both out-of-range and duplicate entries found.

+4 |type| 6= 3,6 and not all entries on the diagonal are present. (Note that no HSL package requires explicit zeros to
be on input on the diagonal.)

+5 |type| 6= 3,6 and not all entries on the diagonal are present and out-of-range and/or duplicate entries found. (Note
that no HSL package requires explicit zeros to be on input on the diagonal.)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 21

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.11.2 To set values of A following a conversion

The user may want to change the values of the entries of A following a successful call to mc69 csru convert.
Alternatively, the user may want to include matrix values after a call to mc69 csru convert with matrix values
not not NULL. This can be done by making a call to mc69 set values, however note that no checks are made on the
values of the diagonal entries.

void mc69 set values(const hsl matrix type type, const int lmap, const int map[],
const pkgtype val in[], const int ne, pkgtype val out[]);

Arguments:
type describes the type of matrix. It must be unchanged since the call to mc69 csru convert that generated map.

lmap must be unchanged since the call to mc69 csru convert that generated map.

map must be unchanged since the call to mc69 csru convert that generated it.

val in must have size at least the value of ptr in[n] on the call to mc69 csru convert. It must be set by the user
to hold the new values of the entries of A matching the original matrix that was input to mc69 csru convert.

ne must be set to the number of entries in the output matrix from the call to mc69 csru convert. If using C indexing,
this is the value of ptr out[n] on exit from mc69 csru convert (for Fortran indexing, subtract 1).

val out must have size at least the value of ptr out[n] on exit from mc69 csru convert. On exit, it contains the
new values of A in standard HSL format, as described in Section 2.6.

2.11.3 Example

Usage of the routines in this section will be demonstrated using the following matrices

A =


1.0 3.0 −2.0
3.0 4.0 5.0

5.0 6.0
−2.0 6.0 7.0+2.0

 , B =


2.0 4.0 −3.0
4.0 6.0 6.0

6.0 7.0
−3.0 7.0 8.0−1.0

 .

The following code reads a matrix in upper Compressed Sparse Row form, and then converts it to HSL standard format
using mc69 csru convert. In addition to the initial conversion, a second set of values matching the same pattern is
read. These values are then converted to HSL standard form using mc69 set values. If provided with the following
input (matching the matrices A and B above) on stdin, the code produces the following output.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 22

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

2.12 Symmetric, skew symmetric and Hermitian matrices in full compressed sparse row format

The following routines handle a symmetric, skew symmetric or Hermitian matrix stored in full compressed sparse
row format (entries in both the lower and upper triangles are supplied by the user). Entries within each row of the
user-supplied matrix do not need to be ordered. There is no requirement that zero entries on the diagonal be explicitly
included.
The input matrix is stored as a series of compressed rows using the following data:

n is a scalar of type int that holds the order of A.

ptr is a rank-one array of type int. The first n values must be set such that ptr[j] holds the position in col of the
first entry in row j and ptr[n] must be the total number of entries.

col is a rank-one array of type int. The first ptr[n] entries hold the column indices of the entries of A, with the
column indices for the entries in row 1 preceding those for row 2, and so on. If a non-diagonal entry (i, j) is
present, its counterpart (j, i) must also be present. The indices within each row may be unordered,

If the values are required in addition to the matrix pattern, the following array is used:

val is a rank-one array of package type. val[k] must hold the value of the entry in col[k].

2.12.1 To convert from full compressed sparse row format to standard HSL format

To convert a symmetric, skew-symmetric or Hermitian matrix held in full compressed sparse row format to standard
HSL format the user may make a call of the following form. This routine checks the user’s data and handles duplicate
entries (they are summed) and out-of-range entries (they are discarded). Entries in the upper triangle are ignored,
except to check that there are the same number of entries in both the lower and upper triangles. For skew-symmetric
matrices only, entries on the diagonal are treated as out-of-range and are discarded.

int mc69_csrlu_convert(const int unit, const hsl_matrix_type type,
const int findex, const int n, const int ptr_in[],
const int col_in[], const pkgtype val_in[], int ptr_out[],
const int lrow, int row_out[], pkgtype val_out[], int *noor,
int *ndup, int *lmap, int map[])

Arguments:
unit holds the Fortran unit number for output. If unit ≥ 0, error and warning messages are written to unit unit,

otherwise they are suppressed. Note that any warning or output messages will refer to the Fortran numbering
scheme (as if findex6=0), regardless of the value of findex.

type describes the type of matrix. It must take one of the values described in Section 2.5 for symmetric, skew-
symmetric or Hermitian matrices.

findex specifies the findex array index. If the arrays ptr in, col in, ptr out and row out start numbering at 0 in
the C style, findex must be set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must
be non-zero. If findex=0, an extra copy of ptr in, col in, ptr out and row out is taken internally by the
function.

n, ptr in and col in must be set by the user to hold A in full compressed sparse column format, as described in
Section 2.12.

val in may be NULL. If not NULL, the first ptr in[n] entries must be set so that val in[k] holds the value of the
entry row in[k]. If val in is NULL, val out must also be NULL.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 23

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

lrow specifies the length of row out and (if it is not NULL) val out. It must be at least as large as the number of
entries in the output matrix. A safe upper bound on this value is the number of entries in the input matrix.

ptr out and row out are rank-one arrays. ptr out is of size n+1 and row out of size lrow. On exit, they hold A in
HSL standard format, as described in Section 2.6.

val out may be NULL. If not NULL, it should have size at least lrow. On exit the first On exit, it is allocated to have
size equal to that of row out and val out[k] holds the value of the entry row out[k]. If val out is NULL,
val in must also be NULL.

noor contains, on exit, the number of out-of-range entries that were discarded.

ndup contains, on exit, the number of duplicate entries that were summed.

lmap may be NULL. If it is not null then, on entry, *lmap must be the size of the array map[], and on exit it will give
the number of entries in map[] that are actually used. If lmap is NULL, map must also be NULL.

map may be NULL. If it is not NULL then it must point to an array of size at least lmap. It should be used if the user
wishes to change the values of the entries of A following the call to mc69 csrlu convert, and should be passed
unaltered to any subsequent calls to mc69 set values. A detailed description of the output format is given in
Section 4.1. If map is NULL, lmap must also be NULL.

Return value:
A successful return indicated by value of 0 or above, with non-zero values indicating a warning. Possible negative
values that are associated with an error are:

-1 Allocation error.

-2 Invalid value of type.

-3 n<0.

-5 ptr[0]<0.

-6 ptr[] is not monotonic increasing.

-10 All entries for a row are out of range.

-13 Number of in-range entries in lower and upper triangles do not match.

-11 |type|=3 (positive-definite case) but one or more diagonal entries are not positive.

-12 type =-3 or -4 (Hermitian case) but one or more entries on the diagonal have non-zero imaginary part.

-15 Only one of val in and val out is NULL.

-16 Only one of lmap and map is NULL.

Possible positive values are:

+1 Out-of-range indices found in row in.

+2 Duplicate indices found in row in.

+3 Both out-of-range and duplicate entries found.

+4 |type| 6= 3,6 and not all entries on the diagonal are present. (Note that no HSL package requires explicit zeros to
be on input on the diagonal.)

+5 |type| 6= 3,6 and not all entries on the diagonal are present and out-of-range and/or duplicate entries found. (Note
that no HSL package requires explicit zeros to be on input on the diagonal.)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 24

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

2.12.2 To set values of A following a conversion

The user may want to change the values of the entries of A following a successful call to mc69 csrlu convert.
Alternatively, the user may want to include matrix values after a call to mc69 csrlu convert with matrix values not
not NULL. This can be done by making a call to mc69 set values, however note that no checks are made on the
values of the diagonal entries.

void mc69 set values(const hsl matrix type type, const int lmap, const int map[],
const pkgtype val in[], const int ne, pkgtype val out[]);

Arguments:
type describes the type of matrix. It must be unchanged since the call to mc69 csrlu convert that generated map.

lmap must be unchanged since the call to mc69 csrlu convert that generated map.

map must be unchanged since the call to mc69 csrlu convert that generated it.

val in must have size at least the value of ptr in[n] on the call to mc69 csrlu convert. It must be set by the user
to hold the new values of the entries of A matching the original matrix that was input to mc69 csrlu convert.

ne must be set to the number of entries in the output matrix from the call to mc69 csrlu convert. If using C
indexing, this is the value of ptr out[n] on exit from mc69 csrlu convert (for Fortran indexing, subtract 1).

val out must have size at least the value of ptr out[n] on exit from mc69 csrlu convert. On exit, it contains the
new values of A in standard HSL format, as described in Section 2.6.

2.12.3 Example

Usage of the routines in this section will be demonstrated using the following matrices

A =


1.0 3.0 −2.0
3.0 4.0 5.0

5.0 6.0
−2.0 6.0 7.0+2.0

 , B =


2.0 4.0 −3.0
4.0 6.0 6.0

6.0 7.0
−3.0 7.0 8.0−1.0

 .

The following code reads a matrix in full Compressed Sparse Row form, and then converts it to HSL standard format
using mc69 csrlu convert. In addition to the initial conversion, a second set of values matching the same pattern is
read. These values are then converted to HSL standard form using mc69 set values. If provided with the followinginput (matching the matrices A and B above) on stdin, the code produces the following output.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 25

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.13 Coordinate format

The following routines handle a user-supplied matrix stored in coordinate format. Each non-zero entry in the input
matrix is held as a pair (row index, column index) or as a triplet (row index, column index, value). For symmetric,
skew symmetric and Hermitian matrices each non-zero entry may be stored as either (i,j) or (j,i) (with appropriate sign
or conjugacy). If both entries are input, or if duplicates are input, the values are summed by the routines described in
this section.
The triplets are stored using the following data:

m is a scalar of type int that holds the number of rows of A.

n is a scalar of type int that holds the number of columns of A.

ne is a scalar of type int that holds the number of entries of A.

row is a rank-one array of type int. The first ne values row[j] must hold the row index for the j-th entry of A.

col is a rank-one array of type int. The first ne values col[j] must hold the column index for the j-th entry of A.

If the values are required in addition to the matrix pattern, the following array is used:

val is a rank-one array of package type. The first ne values val[j] must hold the value for the j-th entry of A.

2.13.1 To convert from coordinate format to standard HSL format

To convert a matrix held in coordinate format to standard HSL format, the user may make a call of the following form.
This routine checks the user’s data and handles duplicate entries (they are summed) and out-of-range entries (they are
discarded). For skew-symmetric matrices, diagonal entries are treated as out-of-range entries.

int mc69_coord_convert(const int unit, const hsl_matrix_type type,
const int findex, const int m, const int n, const int ne, const int row_in[],
const int col_in[], const pkgtype val_in[], int ptr_out[],
const int lrow, int row_out[], pkgtype val_out[], int *noor,
int *ndup, int *lmap, int map[]);

Arguments:
unit holds the Fortran unit number for output. If unit ≥ 0, error and warning messages are written to unit unit,

otherwise they are suppressed. Note that any warning or output messages will refer to the Fortran numbering
scheme (as if findex 6=0), regardless of the value of findex.

type describes the type of matrix. It must take one of the values described in Section 2.5. If this argument has value
0 (HSL MATRIX UNDEFINED), the matrix will be treated as if it were rectangular.

findex specifies the findex array index. If the arrays row in, col in, ptr out and row out start numbering at 0 in
the C style, findex must be set to 0. If the arrays instead start numbering at 1 in the Fortran style, findex must
be non-zero. If findex=0, an extra copy of row in, col in, ptr out and row out is taken internally by the
function.

m, n, ne, row in and col in must be set by the user to hold A in coordinate format, as described in Section 2.13.

val in may be NULL. If not NULL, the first ne entries must be set so that val in[k] holds the value of the k-th
entry of A. If val in is NULL, val out must also be NULL.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 26

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

lrow specifies the length of row out and (if it is not NULL) val out. It must be at least as large as the number of
entries in the output matrix. A safe upper bound on this value is the number of entries in the input matrix.

ptr out and row out are rank-one arrays. ptr out is of size n+1 and row out of size lrow. On exit, they hold A in
HSL standard format, as described in Section 2.6.

val out may be NULL. If not NULL, it should have size at least lrow. On exit the first ptr out[n] entries will be
set such that val out[k] holds the value of the entry row out[k]. If val out is NULL, val in must also be
NULL.

noor contains, on exit, the number of out-of-range entries that were discarded.

ndup contains, on exit, the number of duplicate entries that were summed.

lmap may be NULL. If it is not null then, on entry, *lmap must be the size of the array map[], and on exit it will give
the number of entries in map[] that are actually used. If lmap is NULL, map must also be NULL.

map may be NULL. If it is not NULL then it must point to an array of size at least lmap. It should be used if the user
wishes to change the values of the entries of A following the call to mc69 coord convert, and should be passed
unaltered to any subsequent calls to mc69 set values. A detailed description of the output format is given in
Section 4.1. If map is NULL, lmap must also be NULL.

Return value:
A successful return indicated by value of 0 or above, with non-zero values indicating a warning. Possible negative
values that are associated with an error are:

-1 Allocation error.

-2 Invalid value of type.

-3 m<0 or n<0.

-4 |type|> 1 (square matrix) but m 6=n.

-5 ptr[0]<0.

-6 ptr[] is not monotonic increasing.

-10 All entries are out of range.

-11 |type|=3 (positive-definite case) but one or more diagonal entries are not positive.

-12 type =-3 or -4 (Hermitian case) but one or more entries on the diagonal have non-zero imaginary part.

-15 Only one of val in and val out is NULL.

-16 Only one of lmap and map is NULL.

Possible positive values are:

+1 Out-of-range indices found in row in.

+2 Duplicate indices found in row in.

+3 Both out-of-range and duplicate entries found.

+4 |type| 6= 3,6 and not all entries on the diagonal are present. (Note that no HSL package requires explicit zeros to
be on input on the diagonal.)

+5 |type| 6= 3,6 and not all entries on the diagonal are present and out-of-range and/or duplicate entries found. (Note
that no HSL package requires explicit zeros to be on input on the diagonal.)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 27

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

2.13.2 To set values of A following a conversion

The user may want to change the values of the entries of A following a successful call to mc69 coord convert.
Alternatively, the user may want to include matrix values after a call to mc69 coord convert with matrix values not
not NULL. This can be done by making a call to mc69 set values, however note that no checks are made on the
values of the diagonal entries.

void mc69 set values(const hsl matrix type type, const int lmap, const int map[],
const pkgtype val in[], const int ne, pkgtype val out[]);

Arguments:
type describes the type of matrix. It must be unchanged since the call to mc69 coord convert that generated map.

lmap must be unchanged since the call to mc69 coord convert that generated map.

map must be unchanged since the call to mc69 coord convert that generated it.

val in must have size at least the value of ne on the call to mc69 coord convert. It must be set by the user to hold
the new values of the entries of A matching the original matrix that was input to mc69 coord convert.

ne must be set to the number of entries in the output matrix from the call to mc69 coord convert. If using C
indexing, this is the value of ptr out[n] on exit from mc69 coord convert (for Fortran indexing, subtract 1).

val out must have size at least the value of ptr out[n] on exit from mc69 coord convert. On exit, it contains the
new values of A in standard HSL format, as described in Section 2.6.

2.13.3 Example

Usage of the routines in this section will be demonstrated using the following matrices

A =


1.0 3.0 −2.0
3.0 4.0 5.0

5.0 6.0
−2.0 6.0 7.0+2.0

 , B =


2.0 4.0 −3.0
4.0 6.0 6.0

6.0 7.0
−3.0 7.0 8.0−1.0

 .

The following code reads a matrix in Coordinate form, and then converts it to HSL standard format using
mc69 coord convert. In addition to the initial conversion, a second set of values matching the same pattern is read.
These values are then converted to HSL standard form using mc69 set values. If provided with the following input
(matching the matrices A and B above) on stdin, the code produces the following output.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 28

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL C interface HSL MC69

3 GENERAL INFORMATION

Workspace: HSL MC69 handles its own memory allocations.

Other routines called directly: None.

Input/output: Error, warning and requested printing only, under control of argument unit in each subroutine call.

Restrictions: m, n, ne ≥ 0; ptr monotonic, ptr(1)=1; type ∈ [-6,4]∪{6}.

Portability: Fortran 95, plus allocatable components of derived types.

4 METHOD

4.1 The format of the map output array

The data stored in map is designed to be easy to apply. It is always stored using 1-based (Fortran) indexing, and
consists of two parts:

• The first ptr out[n] entries specify source locations for each entry of val out. If map[k] is positive, val out[k]
= val in[map[k]-1], k= 1, . . .n. Otherwise, if map[k] is negative, the assignment depends on the type of the
matrix:

Skew symmetric val out[k] = -val in[(-map[k])-1];

Hermitian val out[k] = conjg(val in[(-map[k])-1]);

Otherwise val out[k] = val in((-map[k])-1).

• The second part, map[ptr[n]:lmap-1], may be empty. Otherwise entries occur in pairs. Each pair (i, j) =
(map[k],map(k+1)), k= ptr[n],ptr[n]+2, . . .lmap−1, represents a duplicate that was found. If j is positive
then val out[i-1] = val out[i-1] + val in[j-1]. If j is negative and the matrix is Hermitian or skew
symmetric, the conjugate or negative value of the val in[(-j)-1] is used.

Thus, for the simple case where no entries of map(:) are negative, the following code could be used to perform the
work of mc69 set values:

for(k=0; k<ptr[n]; k++)
val_out[k] = val_in[map[k]-1]

for(k=ptr[n]; k<lmap; k+=2)
val_out[map[k]-1] = val_out[map[k]-1] + val_in[map(k+1)-1]

4.2 The routine mc69 cscl clean

Because the size of the array map depends on the number of duplicates, we make a preliminary pass to count them. To
find duplicates quickly, we use a temporary integer array temp that is allocated to have size m and is initialized to zero.
When scanning column j, if we find an entry in row i that is within range, we check temp[i]; if it does not have the
value j, it is the first occurrence in the column and we then set temp[i] to the value j; otherwise, we have a duplicate.

We take the opportunity in this preliminary scan to count the number of out-of-range entries. To make the sorting
in the main scan (slightly) easier, we set row[k] to the artificial value m+1 for each out-of-range entry row[k].

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 29

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

HSL MC69 C interface HSL

The main pass processes the columns one by one. A heap sort is used to order the entries of each column. This
leaves the duplicates next to each other and the out-of-range entries at the end, so a simple scan of the revised column
moves all the wanted entries forward so that they are adjacent.

If val is not NULL, its entries are permuted during the heap sort and its wanted entries are moved forward and
duplicates accumulated during the scan of the column.

If map is not NULL, it is allocated before the pass and initialized to represent the identity permutation of the
entries by setting map[k] = k, k = 1,ptr[n]. It is revised with each data movement made within the sort and the
subsequent pass that handles duplicates and out-of-range entries. For each duplicate accumulation, a pair of integers
is added at the end of map.

Finally, if the matrix is symmetric or Hermitian, the diagonal entries are checked for the relevant properties.

4.3 The routines mc69 cscl convert and mc69 csru convert

Both these routines already have the data in an appropriate format, and merely require the removal of out-of-range
and duplicate entries. In the upper CSR case, we exploit the fact that we are only concerned with symmetric, skew-
symmetric and Hermitian matrices. In these cases, the pattern of the upper triangle held by rows is identical to the
pattern of the lower triangle held by columns, and a simple transform can be applied to obtain the values.

A single pass is made. For each column, first duplicates and out-of-range entries are dropped. Next, entries are
sorted into ascending order using a heap sort. Finally, duplicates are identified and removed.

4.4 The routines mc69 cscu convert and mc69 csrl convert

In both these routines we have the transpose of the desired pattern. We proceed in three passes:

1. The first pass (of row in) counts the number of entries in each column of the output matrix. Out-of-range entries
are ignored, but duplicates are counted (we cannot detect them at this stage).

2. The second pass (of row in) drops entries into destination locations so that ptr out and row out hold the final
output matrix but with duplicates included. By construction, the entries are ordered within each column.

3. The third and final pass (of row out) identifies and sums duplicates to produce the desired matrix.

4.5 The routines mc69 csclu convert and mc69 csrlu convert

Both these routines proceed as mc69 cscu convert, exploiting the availability of the upper triangle to avoid the heap
sort required if the lower triangle is used. Entries in the lower triangle are thus ignored (but not counted as out of
range). If the number of entries in the lower and upper triangles do not match (after discarding out-of-range entries)
an error is issued.

4.6 The routine mc69 coord convert

In this routine, we start with the matrix in coordinate format. We proceed in four passes:

1. The first pass (of row in) counts the number of entries in each column of the output matrix. Out-of-range entries
are ignored, but duplicates are counted (we cannot detect them at this stage).

2. The second pass (of row in) drops entries into destination locations so that ptr out and row out hold the final
output matrix but with duplicates included. At this stage, the entries in each column are unordered.

3. The third pass (of row out) uses a heap sort to order the entries in each column by increasing row index.

4. The final pass (of row out) identifies and sums duplicates to produce the desired matrix.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 30

HSL MC69 v1.4.2— C interface
Documentation date: May 30, 2023

