Science and
R HSL MC79

C INTERFACE HSL

1 SUMMARY

Given the sparsity pattern of a rectangular sparse matrix A = {4 };ux», HSLMC79 has entries to compute a maximum
matching, and a row permutation P and column permutation Q such that PAQ is of block triangular form: a coarse
Dulmage-Mendelsohn decomposition and a fine Dulmage-Mendelsohn decomposition is available.

A matching is a set of the rows & and columns C, where each row in i € & is paired with a unique j € C subject
to a;; # 0. The size of a matching is defined to be equal to the number of columns in C. A maximum matching of A is
a matching of A that has size greater than or equal to any other matching of A. The size of the maximum matching is
equal to the structural rank of the matrix.

The Dulmage-Mendelsohn decomposition consists of a row permutation P and a column permutation Q such that

G G G

R Al Ay Ag
PO="% | 0 4 a5 |, (b

R 0 0 Aj

where A1, formed by the rows in the set &) and the columns in the set (7, is an underdetermined matrix with m; rows
and n; columns (m; < ny or m; = n; = 0); Ay, formed by the rows in the set &, and the columns in the set &, is a
square, well-determined matrix with m;, rows; Az, formed by the rows in the set &3 and the columns in the set (3, is
an overdetermined matrix with m3 rows and n3 columns (m3 > n3 or m3 = n3 = 0). In particular, let the set of rows X
and the set of columns C form a maximum matching of A. The sets &; and &, are subsets of &, and %3 N K_has n3
entries. The sets (; and (3 are subsets of C, and (; N C has m; entries.

The coarse Dulmage-Mendelsohn decomposition orders the unmatched columns as the first columns in PAQ and
orders the unmatched rows as the last rows in PAQ. The output from the coarse Dulmage-Mendelsohn decomposition
can be used to find a node separator from an edge separator of a graph [1].

The fine Dulmage-Mendelsohn decomposition computes a row permutation P and a column permutation Q such
that A| and A3 are block diagonal and each diagonal block is irreducible, and A, is block upper triangular with strongly
connected (square) diagonal blocks. If A is reducible and nonsingular, the fine Dulmage-Mendelsohn decomposition
of a matrix A can be used to solve the linear systems Ax = b with block back-substitution.

[1] A. Pothen and C.-J. Fan (1990). Computing the Block Triangular Form of a Sparse Matrix, ACM Transactions on
Mathematical Software, 16, 303-324.

ATTRIBUTES — Version: 1.1.1 (1 November 2012). Interfaces: C, Fortran. Types: Integer. Original date: Jan-
uary 2011. Origin: H. S. Thorne, Rutherford Appleton Laboratory. Language: Fortran 2003 subset (F95 + TR 15581
+ C interoperability). Remark: The development of this package was supported by EPSRC grant EP/E053351/1.

2 HOW TO USE THE PACKAGE

2.1 Cinterface to Fortran code

This package is written in Fortran and a wrapper is provided for C programmers. This wrapper may only implement a
subset of the full functionality described in the Fortran user documentation.

All subroutines will automatically convert between 0-based (C) and 1-based (Fortran) array indexing, so may
be used transparently from C. This conversion involves both time and memory overheads that may be avoided by
supplying data that is already stored using 1-based indexing. The conversion may be disabled by setting the control

All use is subject to licence. HSL_MC79 v1.1.1— C interface
http://www.hsl.rl.ac.uk/ 1 Documentation date: May 30, 2023

HSL _MC79 C interface HSL

parameter control.f_arrays#0 (i.e. true) and supplying all data using 1-based indexing. With 0-based indexing,
the matrix is treated as having rows 0,1,...,m — 1 and columns 0,1,...,n— 1. In this document, we assume 0-based
indexing when referencing the matrix.

The wrapper uses the Fortran 2003 interoperability features. Matching C and Fortran compilers must be used,
for example, gcc and gfortran, or icc and ifort. If the Fortran compiler is not used to link the user’s program, additional
Fortran compiler libraries may need to be linked explicitly.

2.2 Calling sequences

Access to the package requires inclusion of a header file

#include "hsl _mc79i.h"
The following subroutines are available to the user:

(a) To initialise members of struct mc79_control to their default values, mc79_default_control may be called.
(b) To compute a maximum matching, mc79_matching should be called.
(c) To compute a coarse Dulmage-Mendelsohn decomposition, mc79_coarse should be called.

(d) To compute a fine Dulmage-Mendelsohn decomposition, mc79_fine should be called.

Each call accepts a sparse matrix that is stored using standard HSL format: this may be setup using the HSL_MC69
package, see Section 2.4.1.

2.3 The derived data types

The user must employ the structure defined in the header file to declare scalars of type mc79_control and mc79_info.
The following pseudocode illustrates this.

#include "hsl mc79i.h"

struct mc79_control control;
struct mc79_info info;

The members of mc79_control and mc79_info are described in Section 2.5.1 and Section 2.5.2, respectively.

2.4 Argument lists and calling sequences
2.4.1 Input of the matrix A

The user must supply the matrix A in standard HSL format. This is a compressed sparse column format with the
entries within each column ordered by increasing row index. No checks are made on the user’s data. It is important
to note that any out-of-range entries or duplicates may cause HSL_MC79 to fail in an unpredictable way. Before using
HSL_MC79, the HSL package HSL_MC69 may be used to check for errors and to handle duplicates (HSL_MC69 sums them)
and out-of-range entries (HSL_MC69 removes them).

If the user’s data is held using another standard sparse matrix format (such as coordinate format or sparse com-
pressed row format), we recommend using a conversion routine from HSL_MC69 to put the data into standard HSL
format. The input of A is illustrated in Section 5.

All use is subject to licence. HSL_MC79 v1.1.1— C interface
http://www.hsl.rl.ac.uk/ 2 Documentation date: May 30, 2023

HSL C interface HSL _MC79

2.4.2 The default setting subroutine

Default values for members of the mc79_control structure may be set by a call to mc79_default_control.
void mc79_default_control (struct mc79_control *control);

control has its members set to their default values, as described in Section 2.5.1.

2.4.3 To compute the maximum matching

The method constructs a maximum matching for the matrix A.

void mc79_matching(int m, int n, const int ptr[], const int row[],
int rowmatch[], int colmatch[], const struct mc79_control *control,
struct mc79_info *info);

m must hold the number of rows in A. Restriction: m> 1.
n must hold the number of columns in A. Restriction: n> 1.

ptr is a rank-one array of size n+1. ptr[j] must be set so that ptr[j] is the position in row of the first entry in
column j and ptr[n] must be set to one more than the total number of entries in A.

row is a rank-one array of size ptr[n]-1. The entries must hold the row indices of the entries of A, with the row
indices for the entries in column 0 preceding those for column 1, and so on.

rowmatch is a rank-one array of size m. On exit, if rowmatch[i]=-1 (or 0 if control.f_arrays#0), then row i of
A is not matched to any column. If rowmatch[i]=7j and j>0, then row i of A is matched to column j of A.

colmatch is arank-one array of size n. On exit, if colmatch[j]=-1 (or 0 if control.f_arrays##0), then column j
of A is not matched to any column. If colmatch[j]=1 and 1>0, then column j of A is matched to row i of A.

control isused to control the action, as explained in Section 2.5.1.

info isused to provide information about the execution of the subroutine, as explained in Section 2.5.2. In particular,
info.flagis used as an error/warning flag, as detailed in Section 2.6.

2.4.4 To compute a coarse Dulmage-Mendelsohn decomposition

The method constructs the row and column permutation of a coarse Dulmage-Mendelsohn decomposition of A.

void mc79_coarse(int m, int n, const int ptr[], const int rowl[],
int rowperm[], int colperm[], const struct mc79_control *control,
struct mc79_info *info);

m, n, ptr, row, control and info are all as in the call to mc79_matching.

rowperm is a rank-one array of size m. On exit, if rowperm[i]=7], then row j of A becomes row i of the permuted
matrix.

colperm is a rank-one array of size n. On exit, if colperm[i]=7], then column j of A becomes column i of the
permuted matrix.

All use is subject to licence. HSL_MC79 v1.1.1— C interface
http://www.hsl.rl.ac.uk/ 3 Documentation date: May 30, 2023

HSL _MC79 C interface HSL

2.4.5 To compute a fine Dulmage-Mendelsohn decomposition

The method constructs the row and column permutation of a fine Dulmage-Mendelsohn decomposition of A.

void mc79_fine(int m, int n, const int ptr[], const int rowl[],
int rowperm[], int colperm[], int rowcomp[], int colcomp[],
const struct mc79_control *control, struct mc79_info *info);

m, n, ptr, row, control and info are all as in the call to mc79_matching.
rowperm and colperm are as in the call to mc79_coarse.

rowptr is a rank-one array of size m+2. On exit, it holds the index in the reordered matrix of the first row in each

component:
rowptr[0],..., rowptr[info.hz_comps-1] give the indices of the first row (with respect to the permuted
matrix) of each irreducible diagonal block that lies within Ay of (1.1);
rowptr[info.hz_comps],...,rowptr[info.hz_comps+info.sqg_comps-1] give the indices of the first row
(with respect to the permuted matrix) of each strongly connected diagonal block that lies within A, of
(L.1);
rowptr[info.hz_comps+info.sg.comps],...,rowptr[info.hz_comps+info.sg_.comps+info.vt_comps-1]

give the indices of the first row (with respect to the permuted matrix) of each irreducible diagonal block
block that lies within A3 of (1.1).

In addition, rowptr (info.hz_comps+info.sqg_comps+info.vt_comps] is equal tom+1. The remaining entries
are set to 0.

colptr is arank-one array of size n+2. On exit, it holds the index in the reordered matrix of the first column in each

component:
colptr[0],...,colptr[info.hz_comps-1] give the indices of the first column (with respect to the permuted
matrix) of each irreducible diagonal block that lies within A; of (1.1);
colptr[info.hz_comps],...,colptr[info.hz_comps+info.sq_comps-1] give the indices of the first col-
umn (with respect to the permuted matrix) of each strongly connected diagonal block that lies within A,
of (1.1);
colptrfinfo.hz_comps+info.sg-comps],...,colptr[info.hz_comps+info.sqg_comps+info.vt_comps-1]

give the indices of the first column (with respect to the permuted matrix) of each irreducible diagonal block
block that lies within A3 of (1.1).

In additon, colptr[info.hz_comps+info.sqg_comps+info.vt_comps] is equal to n+1. The remaining entries
are set to 0.

2.5 The derived data types
2.5.1 The derived data type for holding control parameters

The derived data type mc79_control is used to hold controlling data. The members, which may be given default
values through a call to mc79_default_control, are:

C only controls

All use is subject to licence. HSL_MC79 v1.1.1— C interface
http://www.hsl.rl.ac.uk/ 4 Documentation date: May 30, 2023

HSL C interface HSL _MC79

int f_arrays indicates whether to use C or Fortran array indexing. If f_arrays##0 (i.e. evaluates to true) then
1-based indexing of the arrays ptr, row, rowperm, colperm, rowmatch, colmatch, rowptr and colptr is
assumed. Otherwise, if f_arrays=0 (i.e. evaluates to false), then these arrays are copied and converted to
1-based indexing in the wrapper function. All descriptions in this documentation assume f_arrays=0. The
default is f_arrays=0 (false).

Printing controls

int lp specifies the Fortran unit number for error messages. If it is negative, these messages will be suppressed. The
default value is 6 (stdout).

int mp specifies the Fortran unit number for diagnostic messages. If it is negative, these messages will be suppressed.
The default value is 6 (stdout).

print_level specifies the level of diagnostic printing desired. The levels are:
<0 no printing.
0 error and warning messages only.
1 as 0 plus basic diagnostic messages.

2 as 1 plus some more detailed diagnostic messages.

The default value is 0. Values greater than 2 are treated as 2.

2.5.2 The derived data type for holding information

The derived data type mc79_info is used to hold information from the execution of mc79 matching, mc79_coarse
and mc79_fine. The components are:

Information returned by all subroutines

int flag gives the exit status of the algorithm (details in Section 2.6).

int mbar holds the number of rows that cannot be matched to columns in a maximum matching of A.
int nbar holds the number of columns that cannot be matched to rows in a maximum matching of A.
int stat holds the Fortran stat parameter.

Information returned by mc79_coarse and mc79_£fine only

int ml holds the number of rows in the submatrix Aj, where A; is defined by equation (1.1).

int m2 holds the number of rows in the submatrix A,, where A, is defined by equation (1.1).

int m3 holds the number of rows in the submatrix Az, where A3 is defined by equation (1.1).

int nl holds the number of columns in the submatrix A, where A; is defined by equation (1.1).

int n2 holds the number of columns in the submatrix A;, where A, is defined by equation (1.1).

int n3 holds the number of columns in the submatrix Az, where A3 is defined by equation (1.1).

Information returned by mc79_fine only
int hz_comps holds the number of components found in A;, where A is defined by equation (1.1).
int sqg_comps holds the number of components found in A, where A, is defined by equation (1.1).

int vt_comps holds the number of components found in A3, where A3 is defined by equation (1.1).

All use is subject to licence. HSL_MC79 v1.1.1— C interface
http://www.hsl.rl.ac.uk/ 5 Documentation date: May 30, 2023

HSL _MC79 C interface HSL

2.6 Warning and error messages

A successful return from a subroutine in the package is indicated by info.flag having the value zero. A negative
value is associated with an error message that by default will be output on Fortran unit control.lp.

Possible negative values are:

-1 Memory allocation failed. If available, the Fortran stat parameter is returned in info.stat.
-2 Memory deallocation failed. If available, the Fortran stat parameter is returned in info.stat.
-3 n<0.

-4 m<0.

3 GENERAL INFORMATION

Input/output: Error, warning and diagnostic messages. Error messages on unit control.lp and diagnostic messages
on unit control.mp. These have default value 6; printing of these messages is suppressed if the relevant unit
number is negative or if print_level is negative.

Restrictions: m>1and n> 1.

Portability: Fortran 2003 subset (F95 + TR15581 + C interoperability).

4 METHOD

Let G = (V,E) be the bipartite graph of A = {a;; }mxn, With m row vertices, n column vertices, and undirected edges
E ={(i,])|aij # 0}. An alternating augmenting path is a path that starts at an unmatched column/row and traverses
through the graph G until it reaches an unmatched row/column, subject to every other edge in the path being matched.

mc79 matching constructs a maximum matching by performing depth-first searches from unmatched columns to
find any alternating augmenting paths. When an alternating augmenting path is found, the unmatched edges in the
path become matched edges and the previously matched edges become unmatched edges. The method continues until
no more alternating augmenting paths can be found. This method is sometimes called the Ford-Fulkerson method [1].

The Dulmage-Mendelsohn decomposition consists of a row permutation P and a column permutation Q such that

A1 Az Ag
PAQ = 0 A As |,
0 0 Az

where A; is a matrix with m; rows and n; columns (m; < ny), Ay is a matrix with m; rows and n, columns (my = ny),
and A3 is a matrix with m3 rows and n3 columns (m3 > n3). The rows in A; correspond to rows from A that lie in the
set I, where

I = {i:iis reachable from some j via an alternating augmenting path, where j &€ C}.

The columns of A; correspond to the union of the set of unmatched columns from A and the set of columns that are
matched to rows in I. The columns in Az correspond to columns from A that lie in the set 7, where

J ={j: jis reachable from some i via an alternating augmenting path, where i & R }.

The rows of A3 correspond to the union of the set of unmatched rows from A and the set of rows that are matched to
columns in 7.

All use is subject to licence. HSL_MC79 v1.1.1— C interface
http://www.hsl.rl.ac.uk/ 6 Documentation date: May 30, 2023

HSL C interface HSL _MC79

mc79_coarse starts by finding a maximum matching using the same methodology as mc79_matching. The method
then proceeds to find the rows in A; by performing depth-first searches from the unmatched columns to find all of the
row vertices that are reachable from the unmatched columns via alternating augmenting paths. The columns in A
are defined to be the union of the set of unmatched columns and the set of columns matched with the rows in A;
(the unmatched columns are ordered first). Similarly, the columns in A3 are found by performing depth-first searches
from the unmatched rows to find all of the column vertices that are reachable from the unmatched rows via alternating
augmenting paths. The rows in A3 are defined to be the union of the set of unmatched rows and the set of rows matched
to the columns in A3 (the unmatched rows are ordered last).

mc79_fine proceeds as mc79_coarse until all of the rows and columns in Ay, A, and A3 have been computed. The
method then searches A; and A3 to find any irreducible blocks and computes the permutation required to place these
irreducible blocks on the diagonals of A; and A3, respectively. Finally, the subroutine uses Tarjan’s algorithm [2] to
find the strongly connected components in A, and a permutation is formed to reduce A, to block upper triangular form
(with the strongly connected components lying on the diagonal).

[1] T. H. Cormen, C. E. Leiserson and R. L. Rivest (1999). Introduction to algorithms, The MIT Press, Cambridge,
Massachusetts.

[2] R. E. Tarjan (1972). Depth-first search and linear graph algorithms, SIAM J. Comput., 1, 146-160.

S EXAMPLE OF USE

5.1 First example: find a matching

In our first example, we give the code required to generate a matching using HSL_MC79. We generate a matching for
an indefinite matrix with the following sparsity structure:

X X X

. (5.1)

Bk oRo=

The following code may be used

/* hsl_mc79is.c */
/* Simple code to demonstrate finding a matching with HSL_MC79 */

#include <stdio.h>
#include <stdlib.h>
#include "hsl _mc79i.h"

int main(void) {
int i, m, n, ne;
int *row, *ptr, *rowmatch, *colmatch;
struct mc79_control control;
struct mc79_info info;

/* Read in the number of rows, the number of columns, and the number
* of non-zeros in the matrix */
scanf ("%d %d %d", &m, &n, &ne);

/* Allocate arrays */

ptr = (int *) malloc((n+l)*sizeof(int));
row = (int *) malloc(ne*sizeof (int));
rowmatch = (int *) malloc(m*sizeof (int));
colmatch = (int *) malloc(n*sizeof (int));

/* Read in pointers for the matrix */

All use is subject to licence. HSL_MC79 v1.1.1— C interface
http://www.hsl.rl.ac.uk/ 7 Documentation date: May 30, 2023

HSL _MC79 C interface

HSL

for(i=0; i<n+l; i++) scanf("%d", &(ptr[i]));

/* Read in row indices for the matrix */
for (i=0; i<ne; i++) scanf("%d", &(row[i]));

/* Initialise control structure */
mc79_default_control (&control);

/* Find matching */

mc79_matching(m, n, ptr, row, rowmatch, colmatch, &control, &info);

if (info.flag < 0) {

printf ("Error return from mc79_matching. info.flag = %d\n", info.flaq);

free(ptr); free(row); free(rowmatch); free(colmatch);

return 1;

}

/* Print out results */

printf ("rowmatch = \n");

for (i=0; i<m; i++) printf (" %d", rowmatch[i]);
printf ("\ncolmatch = \n");

for (i=0; i<n; i++) printf (" %d", colmatch[i]);
printf ("\ninfo.mbar = %d\n", info.mbar);
printf ("info.nbar = $d\n", info.nbar);

/* Deallocate arrays */
free(ptr); free(row); free(rowmatch); free(colmatch);

return 0;

with the following data:

o o o
==
= W o
o >
[SR&]
o -
w
- w©

This produces the following output:

rowmatch
0134-1-125
colmatch =
016237-1
info.mbar 2
info.nbar 1

5.2 Second Example: Coarse Dulmage-Mendelsohn Decomposition

In our second example, we give the code required to generate a coarse Dulmage-Mendelsohn decomposition for (5.1)

using HSL_MC79. The following code may be used

/* hsl_mc79isl.c */

/* Simple code to demonstrate finding a coarse decomposition with HSL_MC79 */

#include <stdio.h>
#include <stdlib.h>
#include "hsl_mc79i.h"

int main(void) {
int i, m, n, ne;
int *row, *ptr, *rowperm, *colperm;

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSLMC79 vl.1.1— C interface
Documentation date: May 30, 2023

HSL

C interface

HSL_MC79

struct mc79_control control;
struct mc79_info info;

/* Read in the number of rows, the number of columns, and the number

* of non-zeros in the matrix */
scanf ("%d %d %d", &m, &n, &ne);

/* Allocate arrays */

ptr = (int *) malloc((n+l)*sizeof(int));
row = (int *) malloc(ne*sizeof (int));

rowperm = (int *) malloc(m*sizeof (int));
colperm = (int *) malloc(n*sizeof (int));

/* Read in pointers for the matrix */

for (i=0; i<n+l; i++) scanf("%d", &(ptr[i]));

/* Read in row indices for the matrix */

for (i=0; i<ne; 1i++) scanf("%d", &(row[i]));

/* Initialise control structure */
mc79_default_control (&control);

/* Find coarse Dulmage-Mendelsohn decomposition */
mc79_coarse(m, n, ptr, row, rowperm, colperm, &control,

if (info.flag < 0) {

printf ("Error return from mc79_coarse. info.flag = %d\n", info.flag);
free(ptr); free(row); free(rowperm); free(colperm);

return 1;

}

/* Print out results */
printf ("rowperm = \n");

for (i=0; i<m; i++) printf(" %d", rowperm[i]);

printf ("\ncolperm = \n");

for(i=0; i<n; i++) printf (" %d", colperm[i]);

printf ("\ninfo.ml = %d\n", info.ml);
printf ("info.m2 %d\n", info.m2);

(

(
printf ("info.m3 %d\n", info.m3);
printf ("info.nl = %d\n", info.nl);
printf("info.n2 = %d\n", info.n2);
printf ("info.n3 = %d\n", info.n3);

/* Deallocate arrays */
free(ptr); free(row); free(rowperm);

return 0;

with the following data:

o o
=
B W 0
o
NS
o -
w
-3 ©

This produces the following output:

rowperm =
203671514
colperm =

6302451
info.ml
info.m2
info.m3
info.nl
info.n2
info.n3

s N W s

free(colperm);

All use is subject to licence.
http://www.hsl.rl.ac.uk/

HSLMC79 v1.1.1— C interface
Documentation date: May 30, 2023

HSL _MC79 C interface HSL

5.3 Third Example: Fine Dulmage-Mendelsohn Decomposition

In our third example, we give the code required to generate a fine Dulmage-Mendelsohn decomposition for (5.1) using
HSL_MC79. The following code may be used

/* hsl mc79is2.c */
/* Simple code to demonstrate finding a fine decomposition with HSL_MC79 */

#include <stdio.h>
#include <stdlib.h>
#include "hsl_mc79i.h"

int main(void) {
int i, m, n, ne;
int *row, *ptr, *rowperm, *colperm, *rowptr, *colptr;
struct mc79_control control;
struct mc79_info info;

/* Read in the number of rows, the number of columns, and the number
* of non-zeros in the matrix */
scanf ("%d %d %d", &m, &n, &ne);

/* Allocate arrays */

ptr = (int *) malloc((n+l)*sizeof (int));
row = (int *) malloc(ne*sizeof (int));
rowperm = (int *) malloc(m*sizeof (int));
colperm = (int *) malloc(n*sizeof (int));
rowptr = (int *) malloc((m+2)*sizeof (int));
colptr = (int *) malloc((n+2)*sizeof (int));
/* Read in pointers for the matrix */

for (i=0; i<n+tl; i++) scanf("%d", &(ptr[i]));

/* Read in row indices for the matrix */
for (i=0; i<ne; i++) scanf("%d", &(row[i]));

/* Initialise control structure */
mc79_default_control (&control);

/* Find fine Dulmage-Mendelsohn decomposition */
mc79_fine(m, n, ptr, row, rowperm, colperm, rowptr, colptr,
&control, &info);
if(info.flag < 0) {
printf ("Error return from mc79_fine. info.flag = %d\n", info.flag);
free(ptr); free(row); free(rowperm); free(colperm);
free(rowptr); free(colptr);
return 1;

}

/* Print out results */

printf ("Results from mc79_fine\n");

printf ("rowperm = \n");

for(i=0; i<m; i++) printf(" %d", rowperm[i]);
printf ("\ncolperm = \n");

for(i=0; i<n; i++) printf(" %d", colperm[i]);
printf ("\nrowptr = \n");

for(i=0; i<m+2; i++) printf (" %d", rowptr[i]);
printf ("\ncolptr = \n");

for(i=0; 1i<n+2; i++) printf (" %d", colptr[i]);
printf ("\ninfo.hz_comps = %d\n", info.hz_comps);
printf ("info.sq_comps = %d\n", info.sq_comps);
printf ("info.vt_comps = %d\n", info.vt_comps);

/* Deallocate arrays */
free(ptr); free(row); free(rowperm); free(colperm);
free(rowptr); free(colptr);

All use is subject to licence. HSL_MC79 v1.1.1— C interface
http://www.hsl.rl.ac.uk/ 10 Documentation date: May 30, 2023

HSL C interface

HSL_MC79

return 0;

with the following data:

o o o
(]
=W o
o
[\ SR&|
o -
w
-3 ©

This produces the following output:

Results from mc79_fine

rowperm =
20367145
colperm =
3604251
rowptr =
0123458-1-1-1
colptr =
0234567-1-1
info.hz_comps = 1
info.sq_comps = 4
info.vt_comps = 1

5.4 Fourth Example: matching with coordinate input

In our final example, we give the code required to generate a matching for (5.1) using HSL_MC79 when the matrix data
is initially stored in coordinate format. We use HSL_MC69 to convert the input to standard HSL format. The following

code may be used

/* hsl_mc79is3.c */
/* Simple code to demonstrate finding a matching with HSL_MC79 but with
* matrix data initially in coordinate format */

<stdio.h>
<stdlib.h>
"hsl_mc69d.h"
"hsl mc79i.h"

#include
#include
#include
#include

int main(void)
int i, m, n, ne_in, flag, lrow;
int *row_in, *col_in, *row, *ptr,
struct mc79_control control;
struct mc79_info info;

{
*rowmatch, *colmatch;

/* Read in the number of rows, the number of columns, and the number
* of non-zeros in the matrix */
scanf ("%d %d %d", &m, &n, &ne_in);

/* Allocate arrays */

row_in = (int *) malloc(ne_in*sizeof (int));
col_in = (int *) malloc(ne_in*sizeof (int));
rowmatch = (int *) malloc(m*sizeof (int));
colmatch = (int *) malloc(n*sizeof (int));

/* Read in row indices for the matrix */

for (i=0; i<ne_in; i++) scanf ("%d", &(row_in[i]));

All use is subject to licence.

http://www.hsl.rl.ac.uk/ 11

HSLMC79 v1.1.1— C interface
Documentation date: May 30, 2023

HSL _MC79 C interface

HSL

/* Read in column indices for the matrix */
for (i=0; i<ne_in; i++) scanf ("%d", &(col_in[i]));

/* Convert matrix into standard HSL format */
ptr = (int *) malloc((n+l)*sizeof(int));

lrow = ne_in; /* maximum size of output cannot exceed size of input */

row = (int *) malloc(lrow*sizeof (int));

flag = mc69_coord_convert (-1, HSL_MATRIX_ REAL_RECT, -
col_in, NULL, ptr, lrow, row, NULL, NULL, NULL, NULL, NULL);

f(flag < 0) {

printf ("Error return from mc69_coord_convert. flag = %

free(row_in); free(col in

)i
free(ptr); free(row); free(rowmatch); free(colmatch);

return 1;
}
printf ("ptr = \n");
for (i=0; i<n+l; i++) printf (" %d", ptr(il]);
printf ("\nrow = \n");
for(i=0; i<ptr([n]; i++) printf(" %d", row[i]);
printf ("\n");

/* Initialise control structure */
mc79_default_control (&control);

/* Find matching */
mc79_matching(m, n, ptr, row, rowmatch, colmatch,
if (info.flag < 0) {

printf ("Error return from mc79_matching. info.flag = %

free(row_in); free(col in

)i
free(ptr); free(row); free(rowmatch); free(colmatch);

return 1;

}

/* Print out results */

printf ("rowmatch = \n");

for (i=0; i<m; i++) printf (" %d", rowmatch[i]);
printf ("\ncolmatch = \n");

for (i=0; i<n; i++) printf (" %d", colmatch[i]);
printf ("\ninfo.mbar = %d\n", info.mbar);
printf("info.nbar = $d\n", info.nbar);

/* Deallocate arrays */
free(row_in); free(col in

)I
free(ptr); free(row); free(rowmatch); free(colmatch);

return 0;

with the following data:

o o
[e
= O
N oy
w N
S o
S W
&]
o N

This produces the following output:

ptr =
01345789
row =
014620372
rowmatch =
0134-1-125
colmatch =
016237-1
info.mbar = 2
info.nbar = 1

row_in,

info.flag);

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 12

HSLMC79 vl.1.1— C interface
Documentation date: May 30, 2023

