
HSL MI13
PACKAGE SPECIFICATION HSL

1 SUMMARY

Given a block symmetric matrix

KH =

(
H AT

A −C

)
,

where H has n rows and columns and A has m rows and n columns, this package constructs preconditioners of the
form

KG =

(
G AT

A −C

)
. (1.1)

Here, the leading block matrix G is a suitably chosen approximation to H; it may either be prescribed explicitly, in
which case a symmetric indefinite factorization of KG will be formed using HSL MA57, or implicitly. In the latter case,
KG will be ordered to the form

KG = P

 G11 GT
21 AT

1
G21 G22 AT

2
A1 A2 −C

PT (1.2)

where P is a permutation and A1 is an invertible sub-block (“basis”) of the columns of A; the selection and factor-
ization of A1 uses HSL MA48 - any dependent rows in A are removed at this stage. Once the preconditioner has been
constructed, solutions to the preconditioning system(

G AT

A −C

)(
x
y

)
=

(
a
b

)
(1.3)

may be computed. The essential ideas are described in detail in

H. S. Dollar, N. I. M. Gould and A. J. Wathen. “On implicit-factorization constraint preconditioners”. In Large
Scale Nonlinear Optimization (G. Di Pillo and M. Roma, eds.) Springer Series on Nonconvex Optimization and Its
Applications, Vol. 83, Springer Verlag (2006) 61–82
and
H. S. Dollar, N. I. M. Gould, W. H. A. Schilders and A. J. Wathen “On iterative methods and implicit-factorization
preconditioners for regularized saddle-point systems”. SIAM Journal on Matrix Analysis and Applications, 28(1)
(2006) 170–189.

Full advantage is taken of any zero coefficients in the matrices H, A and C.

ATTRIBUTES — Version: 1.2.0 (10 April 2013). Types: Real (single,double). Uses: KB07, MC59, HSL ZD11,
HSL MA57, HSL MA48, BLAS routine GEMV, LAPACK routines POTRF and POTRS. Date: July 2007. Origin: H. S.
Dollar and N. I. M. Gould, Rutherford Appleton Laboratory. Language: Fortran 2003 subset(F95 + TR15581).
Remark: The development of this package was supported by EPSRC grant GR/S42170.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

Access to the package requires a USE statement of the form

Single precision version
USE HSL MI13 single

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 1

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL MI13 HSL

Double precision version
USE HSL MI13 double

In HSL MI13 single, all reals are default reals. In HSL MI13 double, all reals are double precision reals. In both
modules, all integers are default integers.
If it is required to use both modules at the same time, then the derived types ZD11 type, MI13 control type
(§2.3), MI13 inform type (§2.4) and MI13 data type (§2.5) and the subroutines MI13 setup, MI13 initialize,
MI13 form and factorize, MI13 solve and MI13 terminate (§2.6) must be renamed on one of the USE statements.
The following subroutines are available to the user:

1. The subroutine MI13 initialize is used to set default values and initialize private components of data before
solving one or more problems with the same sparsity and bound structure.

2. The subroutine MI13 form and factorize is called to form and factorize the preconditioner.

3. The subroutine MI13 solve is called to apply the preconditioner, that is to solve a linear system of the form
(1.3).

4. The subroutine MI13 terminate is provided to allow the user to automatically deallocate array components of
the private data, allocated by MI13 form and factorize at the end of the solution process.

2.2 The derived data type for holding matrices

The derived data type ZD11 TYPE is used to hold the matrices H, A and C. The components of ZD11 TYPE used here
are:

m is a scalar component of type default INTEGER that holds the number of rows in the matrix.

n is a scalar component of type default INTEGER that holds the number of columns in the matrix.

type is a rank-one array of type default CHARACTER that is used to indicate the storage scheme used. If the dense
storage scheme (see §2.2.1) is used, then the first five components of type must contain the string DENSE. For the
sparse co-ordinate scheme (see §2.2.2), the first ten components of type must contain the string COORDINATE,
for the sparse row-wise storage scheme (see §2.2.3), the first fourteen components of type must contain the
string SPARSE BY ROWS, and for the diagonal storage scheme (see §2.2.4), the first eight components of type
must contain the string DIAGONAL. It is also permissible to set the first four components of type to the string
ZERO in the case of matrix C to indicate that C = 0.

For convenience, the procedure ZD11 put may be used to allocate sufficient space and insert the required
keyword into type. For example, if H is of derived type ZD11 type and we wish to use the co-ordinate storage
scheme, we may simply

CALL ZD11_put(H%type,’COORDINATE’,stat=stat)

See the documentation for the HSL package ZD11 for further details on the use of ZD11 put.

ne is a scalar variable of type default INTEGER that holds the number of matrix entries.

val is a rank-one allocatable array of type default REAL and dimension at least ne, that holds the values of the entries.
Each pair of off-diagonal entries hi j = h ji of a symmetric matrix H is represented as a single entry (see §2.2.1–
2.2.3); the same applies to C. Any duplicated entries that appear in the sparse co-ordinate or row-wise schemes
will be summed. If the matrix is stored using the diagonal scheme (see §2.2.4), val should be of length n, and
the value of the i-th diagonal stored in val(i).

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 2

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL HSL MI13

row is a rank-one allocatable array of type default INTEGER and dimension at least ne, that may hold the row indices
of the entries. (see §2.2.2).

col is a rank-one allocatable array of type default INTEGER and dimension at least ne, that may hold the column
indices of the entries (see §2.2.2–2.2.3).

ptr is a rank-one allocatable array of type default INTEGER and dimension at least m + 1, that may hold the allocat-
ables to the first entry in each row (see §2.2.3).

Each of the input matrices H, A and C may be stored in a variety of input formats.

2.2.1 Dense storage format

The matrix A is stored as a compact dense matrix by rows, that is, the values of the entries of each row in turn are
stored in order within an appropriate real one-dimensional array. Component n∗ (i−1)+ j of the storage array A%val
will hold the value ai j for i = 1, . . . ,m, j = 1, . . . ,n. Since H and C are symmetric, only the lower triangular parts (that
is the part hi j for 1≤ j ≤ i≤ n and ci j for 1≤ j ≤ i≤m) need be held. In these cases the lower triangle will be stored
by rows, that is component i∗ (i−1)/2+ j of the storage array H%val will hold the value hi j (and, by symmetry, h ji)
for 1 ≤ j ≤ i ≤ n. Similarly component i ∗ (i− 1)/2+ j of the storage array C%val will hold the value ci j (and, by
symmetry, c ji) for 1≤ j ≤ i≤ m.

2.2.2 Sparse co-ordinate storage format

Only the nonzero entries of the matrices are stored. For the l-th entry of A, its row index i, column index j and value ai j
are stored in the l-th components of the integer arrays A%row, A%col and real array A%val. The order is unimportant,
but the total number of entries A%ne is also required. The same scheme is applicable to H and C (thus, for H, requiring
integer arrays H%row, H%col, a real array H%val and an integer value H%ne), except that only the entries in the lower
triangle need be stored.

2.2.3 Sparse row-wise storage format

Again only the nonzero entries are stored, but this time they are ordered so that those in row i appear directly before
those in row i+ 1. For the i-th row of A, the i-th component of a integer array A%ptr holds the position of the first
entry in this row, while A%ptr (m+1) holds the total number of entries plus one. The column indices j and values ai j
of the entries in the i-th row are stored in components l = A%ptr(i), . . . ,A%ptr (i+1)−1 of the integer array A%col,
and real array A%val, respectively. The same scheme is applicable to H and C (thus, for H, requiring integer arrays
H%ptr, H%col, and a real array H%val), except that only the entries in the lower triangle need be stored.

For sparse matrices, this scheme almost always requires less storage than its predecessor.

2.2.4 Diagonal storage format

If H is diagonal (i.e., hi j = 0 for all 1 ≤ i 6= j ≤ n) only the diagonals entries hii, 1 ≤ i ≤ n, need be stored, and the
first n components of the array H%val may be used for the purpose. The same applies to C, but there is no sensible
equivalent for the non-square A.

2.2.5 Zero storage format

If C is a zero matrix (i.e., C = 0), then no entries need be stored. There is not a sensible equivalent for A or H.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL MI13 HSL

2.3 The derived data type for holding control parameters

The derived data type MI13 control type is used to control the action. The user must declare a structure of type
MI13 control. Components of this derived type are automatically given their default values in the definition of the
type: the user does not need to set them unless values other than the defaults are required. The following components
are employed:

error is a scalar variable of type default INTEGER that holds the stream number for error and warning messages.
Printing of error and warning messages in MI13 solve and MI13 terminate is suppressed if error < 0. The
default is error=6.

out is a scalar variable of type default INTEGER that holds the stream number for diagnostic printing. Diagnostic
printing is suppressed if out<0. The default is out=6.

print level is a scalar variable of type default INTEGER that is used to control the amount of diagnostic printing
required. No no diagnostic printing will occur if print level≤0. If print level=1, a single line of output
will be produced for each iteration of the process. If print level≥2, this output will be increased to provide
significant detail of each iteration. The default is print level=0.

new h is a scalar variable of type default INTEGER that is used to indicate how H has changed (if at all) since the
previous call to MI13 form and factorize. Possible values are:

0 H is unchanged

1 the values in H have changed, but its nonzero structure is as before.

2 both the values and structure of H have changed.

The default is new h=2.

new a is a scalar variable of type default INTEGER that is used to indicate how A has changed (if at all) since the
previous call to MI13 form and factorize. Possible values are:

0 A is unchanged

1 the values in A have changed, but its nonzero structure is as before.

2 both the values and structure of A have changed.

The default is new a=2.

new c is a scalar variable of type default INTEGER that is used to indicate how C has changed (if at all) since the
previous call to MI13 form and factorize. Possible values are:

0 C is unchanged

1 the values in C have changed, but its nonzero structure is as before.

2 both the values and structure of C have changed.

The default is new c=2.

preconditioner is a scalar variable of type default INTEGER that specifies the preferred preconditioner to be com-
puted; positive values correspond to explicit-factorization preconditioners while negative values indicate implicit-
factorization ones. If the chioce of preconditioner is unsuitabble for the structure of the problem, then a different
preconditioner may be computed: info%preconditioner contains the value of the preconditioner used. Pos-
sible values are:

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 4

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL HSL MI13

0 the preconditioner is chosen automatically on the basis of which option looks most likely to be the most
efficient.

1 G is chosen to be the identity matrix.

2 G is chosen to be H
3 G is chosen to be the diagonal matrix whose diagonals are the larger of those of H and a positive constant

(see min diagonal below).

4 G is chosen to be the band matrix of given semi-bandwidth whose entries coincide with those of H within the
band. (see semi bandwidth below).

11 G is chosen so that G11 = 0, G21 = 0 and G22 = H22.

12 G is chosen so that G11 = 0, G21 = H21 and G22 = H22.

-1 for the special case when C = 0, G is chosen so that G11 = 0, G21 = 0, G22 is the identity matrix, and the
preconditioner is computed implicitly. If C 6= 0, then the subroutine proceeds as if preconditioner =
-3.

-2 for the special case when C = 0, G is chosen so that G11 = 0, G21 = 0, G22 = H22 and the preconditioner is
computed implicitly. If C 6= 0, then the subroutine proceeds as if preconditioner = -4.

-3 for the general case when C is symmetric, G is chosen so that G11 = 0, G21 = 0, G22 is the identity matrix,
and the preconditioner is computed implicitly.

-4 for the general case when C is symmetric, G is chosen so that G11 = 0, G21 = 0, G22 = H22 and the
preconditioner is computed implicitly.

-5 for the general case when C is symmetric, G is chosen so that G11 = 0, G21 =H21, G22 = I+H21A−1
1 CA−T

1 HT
21+

H21A−1
1 A2 +AT

2 A−T
1 HT

21 and the preconditioner is computed implicitly.

-6 for the general case when C is symmetric, G is chosen so that G11 = 0, G21 =H21, G22 =H22+H21A−1
1 CA−T

1 HT
21+

H21A−1
1 A2 +AT

2 A−T
1 HT

21 and the preconditioner is computed implicitly.

-7 for the general case when C is symmetric, G is chosen so that G11 = αAT
1 A1, G21 = αAT

2 A1, G22 =
I+αAT

2 A2 and the preconditioner is computed implicitly. The value of α may be given by the user or
determined automatically. See alpha below.

-8 for the general case when C is symmetric, G is chosen so that G11 = αAT
1 A1, G21 = αAT

2 A1, G22 =
H22 +αAT

2 A2 and the preconditioner is computed implicitly. The value of α may be given by the user or
determined automatically. See alpha below.

Other values may be added in future. The default is preconditioner=0.

semi bandwidth is a scalar variable of type default INTEGER that specifies the semi-bandwidth of the band precon-
ditioner when preconditioner=4, if appropriate. The default is semi bandwidth=5.

factorization is a scalar variable of type default INTEGER that specifies which factorization of the preconditioner
should be used if preconditioner≥1. Possible values are:

0 the factorization is chosen automatically on the basis of which option looks likely to be the most efficient.

1 if G is diagonal and non-singular, then a Schur-complement factorization (see §4), involving factors of G and
AG−1AT , will be used. Otherwise, and augmented-system factorization, involving factors of KG, will be
used.

2 an augmented-system factorization, involving factors of KG, will be used.

3 a null-space factorization (see §4) will be used provided that C= 0. If C 6= 0, then the subroutine will proceed
as if factorization = 1.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 5

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL MI13 HSL

The default is factorization=0.

max col is a scalar variable of type default INTEGER that specifies the maximum number of nonzeros in a column of
A which is permitted by the Schur-complement factorization. The default is max col=35.

indmin is a scalar variable of type default INTEGER that specifies an initial estimate as to the amount of integer
workspace required by the factorization package MA57. The default is indmin=1000.

valmin is a scalar variable of type default INTEGER that specifies an initial estimate as to the amount of real workspace
required by the factorization package MA57. The default is valmin=1000.

len ma48min is a scalar variable of type default INTEGER that specifies an initial estimate as to the amount of
workspace required by the factorization package MA48. The default is len ma48min=1000.

itref max is a scalar variable of type default INTEGER that specifies the maximum number of iterative refinements
allowed with each application of the preconditioner. The default is itref max=1.

basis scale is a scalar variable of type default INTEGER that specifies whether the columns of A should be scaled
or reordered before A is analyzed to find the invertible sub-block A1. Any scaling is removed before operating
with A1 or A2. If the diagonal entries of H differ by several orders of magnitude, then it is recommended that
basis scale>0. Possible values are:

0 no scaling or initial reordering used.

1 For i = 1, . . . ,n : the ith column of A is scaled by the inverse of the ith diagonal entry of H.

2 For i = 1, . . . ,n : the ith column of A is scaled by the inverse of the square root of the ith diagonal entry of H.

3 If find basis by transpose = .false. then the columns of A are initially reordered such that the diag-
onal entries of H are monotonically increasing when correspondingly reordered; otherwise, no scaling or
initial reordering used.

The default is basis scale=2.

alpha is a scalar variable of type default REAL that specifies the value of α for preconditioner=-7 or preconditioner
= -8. If alpha is non-positive, then the value of α is chosen automatically such that C+αI is positive definite.
If alpha is positive, then α = alpha is used and C+αI must be positive definite. The default is alpha=-1.

pivot tol is a scalar variable of type default REAL that holds the threshold pivot tolerence used by the matrix factor-
ization. See the documentation for the packages MA57 and MA48 for details. The default is pivot tol=0.01.

pivot tol for basis is a scalar variable of type default REAL that holds the threshold pivot tolerence used by the
package MA48 when computing the non-singular basis matrix A1 for an implicit-factorization preconditioner.
Since the calculation of a suitable basis is crucial, it is sensible to pick a larger value of pivot tol for basis
than of pivot tol. The default is pivot tol for basis=0.5.

zero pivot is a scalar variable of type default REAL that is used to detect singularity. Any pivot encountered during
the factorization whose absolute value is less than or equal to zero pivot will be regarded as zero, and the
matrix as singular. The default is zero pivot=EPSILON(1.0)0.75.

min diagonal is a scalar variable of type default REAL that specifies the smallest permitted diagonal in G for some
of the preconditioners provided. See preconditioner above. The default is min diagonal=0.00001.

remove dependencies is a scalar variable of type default LOGICAL that must be set .TRUE. if linear dependent rows
from the second block equation Ax−Cy = b from (1.3) should be removed and .FALSE. otherwise. The default
is remove dependencies=.TRUE..

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL HSL MI13

check basis is a scalar variable of type default LOGICAL that must be set .TRUE. if the basis matrix A1 constructed
when using an implicit-factorization preconditioner or null-space factorization should be assessed for ill condi-
tioning and corrected if necessary. If these precautions are not thought necessary, check basis should be set
.FALSE.. The default is check basis=.TRUE..

find basis by transpose is a scalar variable of type default LOGICAL that must be set .TRUE. if the invertible sub-
block A1 of the columns of A is computed by analysing the transpose of A and .FALSE. if the analysis is based
on A itself. Generally an analysis based on the transpose is faster. The default is find basis by transpose=.TRUE..

use old basis is a scalar variable of type default LOGICAL that must be set .TRUE. if new a = 0 and the user
wishes to use the previously computed basis. If new a > 0 or use old basis = .FALSE. the basis will be
recomputed. The default is use old basis=.FALSE..

affine is a scalar variable of type default LOGICAL that must be set .TRUE. if the component b of the right-hand side
of the required system (1.3) is zero, and .FALSE. otherwise. Computational savings are possible when b = 0.
The default is affine=.FALSE..

perturb to make definite is a scalar variable of type default LOGICAL that must be set .TRUE. if the user wants to
guarantee that the computed preconditioner is suitable by boosting the diagonal of the requested G and .FALSE.
otherwise. The default is perturb to make definite=.TRUE..

get norm residual is a scalar variable of type default LOGICAL that must be set .TRUE. if the user wishes the pack-
age to return the value of the norm of the residuals for the computed solution when applying the preconditioner
and .FALSE. otherwise. The default is get norm residual=.FALSE..

space critical is a scalar variable of type default LOGICAL that must be set .TRUE. if space is critical when allo-
cating arrays and .FALSE. otherwise. The package may run faster if space critical is .FALSE. but at the
possible expense of a larger storage requirement. The default is space critical=.FALSE..

deallocate error fatal is a scalar variable of type default LOGICAL that must be set .TRUE. if the user wishes to
terminate execution if a allocatable deallocation fails, and .FALSE. if an attempt to continue will be made. The
default is deallocate error fatal=.FALSE..

prefix is a scalar variable of type default CHARACTER and length 30 that may be used to provide a user-selected
character string to preface every line of printed output. Specifically, each line of output will be prefaced by the
string prefix(2:LEN(TRIM(prefix))-1), thus ignoring the first and last non-null components of the supplied
string. If the user does not want to preface lines by such a string, they may use the default prefix="".

2.4 The derived data type for holding informational parameters

The derived data type MI13 inform type is used to hold parameters that give information about the progress and
needs of the algorithm. The components of MI13 inform type are:

status is a scalar variable of type default INTEGER that gives the exit status of the algorithm. See §2.7 for details.

alloc status is a scalar variable of type default INTEGER that gives the status of the last attempted array allocation
or deallocation. This will be 0 if status=0.

bad alloc is a scalar variable of type default CHARACTER and length 80 that gives the name of the last internal array
for which there were allocation or deallocation errors. This will be the null string if status=0.

ma57 analyse status is a scalar variable of type default INTEGER that reports the return code from the most recent
call to MA57 analyse by MI13 form and factorize. A non-zero value indicates a warning or an error. See
the documentation for the package MA57 for further details.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 7

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL MI13 HSL

ma57 factorize status is a scalar variable of type default INTEGER that reports the return code from the most recent
call to MA57 factorize by MI13 form and factorize. A non-zero value indicates a warning or an error. See
the documentation for the package MA57 for further details.

ma57 solve status is a scalar variable of type default INTEGER that reports the return code from the most recent call
to MA57 solve by MI13 solve. A non-zero value indicates a warning or an error. See the documentation for
the package MA57 for further details.

ma48 analyse status is a scalar variable of type default INTEGER that reports the return code from the most recent
call to MA48 analyse by MI13 form and factorize. A non-zero value indicates a warning or an error. See
the documentation for the package MA48 for further details.

ma48 solve status is a scalar variable of type default INTEGER reports the return code from the most recent call to
MA48 solve by MI13 solve. A non-zero value indicates a warning or an error. See the documentation for the
package MA48 for further details.

factorization integer is a scalar variable of type default INTEGER reports the number of integers required to hold
the factorization.

factorization real is a scalar variable of type default INTEGER reports the number of reals required to hold the
factorization.

preconditioner is a scalar variable of type default INTEGER that indicates the preconditioner method used. The
range of values returned corresponds to those requested in control%preconditioner, excepting that the re-
quested value may have been altered to a more appropriate one during the factorization. In particular, if the
automatic choice control%preconditioner 0 is requested, preconditioner reports the actual choice made.

factorization is a scalar variable of type default INTEGER that indicates the factorization method used. The range
of values returned corresponds to those requested in control%factorization, excepting that the requested
value may have been altered to a more appropriate one during the factorization. In particular, if the automatic
choice control%factorization=0 is requested, factorization reports the actual choice made.

rank is a scalar variable of type default INTEGER that gives the computed rank of A.

inform%entries ignored a is a scalar variable of type default INTEGER that gives the computed number of entries
in A that have out-of-range indices.

inform%entries ignored c is a scalar variable of type default INTEGER that gives the computed number of entries
in C that have out-of-range indices.

inform%entries ignored h is a scalar variable of type default INTEGER that gives the computed number of entries
in H that have out-of-range indices.

rank def is a scalar variable of type default LOGICAL that has the value .TRUE. if MI13 form and factorize be-
lieves that A is rank defficient, and .FALSE. otherwise.

perturbed is a scalar variable of type default LOGICAL that has the value .TRUE. if and only if the original choice
of G has been perturbed to ensure that KG is an appropriate preconditioner to use. This will only happen if
control%perturb to make definite has been set .TRUE..

alpha is a scalar variable of type default REAL that holds the value α used when preconditioner=-7 or preconditioner=-8.
Otherwise it will have the value -1.0.

norm residual is a scalar variable of type default REAL that holds the infinity norm of the residual of the system
(1.3) after a call to MI13 solve if control%get norm residual has been set .TRUE.. Otherwise it will have
the value -1.0.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL HSL MI13

2.5 The derived data type for holding problem data

The derived data type MI13 data type is used to hold all the data for the problem and the factors of its preconditioners
between calls of MI13 procedures. This data should be preserved, untouched, from the initial call to MI13 initialize
to the final call to MI13 terminate.

2.6 Argument lists and calling sequences

We use square brackets [] to indicate OPTIONAL arguments. In each call, optional arguments follow the argument
info. Since we reserve the right to add additional optional arguments in future releases of the code, we strongly
recommend that all optional arguments be called by keyword, not by position.

2.6.1 The initialization subroutine

Default values are provided as follows:

CALL MI13 initialize(data,control)

data is a scalar INTENT(OUT) argument of type MI13 data type (see §2.5). It is used to hold data about the problem
being solved. MI13 initialize will ensure that all components that are allocatable arrays are disassociated.

control is a scalar INTENT(OUT) argument of type MI13 control type (see §2.3). On exit, its components will
have been given the default values specified in §2.3.

2.6.2 The subroutine for forming and factorizing the preconditioner

A preconditioner of the form (1.1) is formed and factorized as follows:

CALL MI13 form and factorize(n,m,H,A,C,data,control,inform)

n is a scalar INTENT(IN) argument of type default INTEGER that specifies the number of rows of H (and columns of
A). Restriction: n≥1.

m is a scalar INTENT(IN) argument of type default INTEGER that specifies the number of rows of A and C. Restriction:
0≤m≤n.

H is a scalar INTENT(IN) argument of type ZD11 type whose components must be set to specify the data defining the
matrix H (see §2.2).

A is a scalar INTENT(IN) argument of type ZD11 type whose components must be set to specify the data defining the
matrix A (see §2.2).

C is a scalar INTENT(IN) argument of type ZD11 type whose components must be set to specify the data defining the
matrix C (see §2.2).

data is a scalar INTENT(INOUT) argument of type MI13 data type (see §2.5). It is used to hold data about the
problem being solved. It must not have been altered by the user since the last call to MI13 initialize.

control is a scalar INTENT(IN) argument of type MI13 control type (see §2.3). Default values may be assigned
by calling MI13 initialize prior to the first call to MI13 solve.

inform is a scalar INTENT(OUT) argument of type MI13 inform type (see §2.4). A successful call to MI13 solve
is indicated when the component status has the value 0. For other return values of status, see §2.7.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 9

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL MI13 HSL

2.6.3 The subroutine for applying the preconditioner

The preconditioner may be applied to solve a system of the form (1.3) as follows:

CALL MI13 solve(n,m,H,A,C,data,control,inform,SOL)

Components n, m, H A, C, data and control are exactly as described for MI13 form and factorize and must not
have been altered in the interim.

inform is a scalar INTENT(OUT) argument of type MI13 inform type (see §2.4), that should be passed unaltered
since the last call to MI13 form and factorize or MI13 solve. A successful call to MI13 solve is indicated
when the component status has the value 0. For other return values of status, see §2.7.

SOL is a rank-one INTENT(INOUT) array of type default REAL and length at least n+m, that must be set on entry to hold
the composite vector (aT bT)T . In particular SOL(i), i = 1, . . .n should be set to ai, and SOL(n+ j), j = 1, . . . , m
should be set to b j. On successful exit, SOL will contain the solution (xT yT)T to (1.3), that is SOL(i), i = 1, . . . ,
n will give xi, and SOL(n+ j), j = 1, . . . , m will contain y j.

2.6.4 The termination subroutine

All previously allocated arrays are deallocated as follows:

CALL MI13 terminate(data,control,inform)

data is a scalar INTENT(INOUT) argument of type MI13 data type exactly as for MI13 solve, which must not have
been altered by the user since the last call to MI13 initialize. On exit, array components will have been
deallocated.

control is a scalar INTENT(IN) argument of type MI13 control type exactly as for MI13 solve.

inform is a scalar INTENT(OUT) argument of type MI13 inform type exactly as for MI13 solve. Only the com-
ponent status will be set on exit, and a successful call to MI13 terminate is indicated when this component
status has the value 0. For other return values of status, see §2.7.

2.7 Warning and error messages

A negative value of info%status on exit from MI13 form and factorize, MI13 solve or MI13 terminate indi-
cates that an error has occurred. No further calls should be made until the error has been corrected. Possible values
are:

-1. An allocation error occured. A message indicating the offending array is written on unit control%error, and the
returned allocation status and a string containing the name of the offending array are held in inform%alloc -
status and inform%bad alloc respectively.

-2. A deallocation error occured. A message indicating the offending array is written on unit control%error and the
returned allocation status and a string containing the name of the offending array are held in inform%alloc -
status and inform%bad alloc respectively.

-3. One of the restrictions n> 0 or m≥ 0 or requirements that A%type, H%type and C%type contain its relevant string
’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ or ’ZERO’ has been violated.

-4. An error was reported by MA57 analyse. The return status from MA57 analyse is given in inform%ma57 -
analyse status. See the documentation for the HSL package MA57 for further details.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 10

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL HSL MI13

-5. An error was reported by MA57 factorize. The return status from MA57 factorize is given in inform%ma57 -
factorize status. See the documentation for the HSL package MA57 for further details.

-6. An error was reported by MA57 solve. The return status from MA57 solve is given in inform%ma57 solve -
status. See the documentation for the HSL package MA57 for further details.

-7. An error was reported by MA48 analyse. The return status from MA48 analyse is given in inform%ma48 analyse -
status. See the documentation for the HSL package MA48 for further details.

-8. An error was reported by MA48 solve when the preconditioner is prescribed explicitly. The return status from
MA48 solve is given in inform%ma48 solve status. See the documentation for the HSL package MA48 for
further details.

-9. The computed preconditioner has the wrong inertia and is thus unsuitable.

-10. An error was reported by MC59 when the preconditioner is prescribed implicitly. The return status from MC59 is
given in inform%mc59 status. See the documentation for the HSL package MC59 for further details.

-11. The value of control%preconditioner is invalid.

-12. The matrix C+αI is not positive definite and control%preconditioner = -7 or -8. Hence, the precondi-
tioner is not suitable.

A positive value of info%status on exit from MI13 form and factorize warns of unexpected behaviour. Pos-
itive values are summed so that the user can identify all warnings issued by MI13, e.g. info%flag=+3 indicates both
warnings +1 and +2 have been issued.

+1. The matrix A is rank deficient.

+2. Some input entries ignored because they were found to be out-of-range. The number of entries found to be out-
of-range in A is given in inform%entries ignored a, the number of entries found to be out-of-range in C
is given in inform%entries ignored c and the number of entries found to be out-of-range in H is given in
inform%entries ignored h.

+4. control%preconditioner 6=0 and info%preconditioner6=control%preconditioner.

+8. control%factorization 6=0 and info%factorization6=control%factorization.

3 GENERAL INFORMATION

Input/output: Output is under control of the arguments control%error, control%out and control%print level.

Restrictions: n>0, 0≤m≤n, H%type ∈ {’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’, ’DIAGONAL’ }, A%type ∈
{’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’ }, and C%type∈{’DENSE’, ’COORDINATE’, ’SPARSE BY ROWS’,
’DIAGONAL’, ’ZERO’ }.

4 METHOD

The method used depends on whether an explicit or implicit factorization is required. In the explicit case, the package
is really little more than a wrapper for the symmetric, indefinite linear solver MA57 in which the system matrix KG is

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 11

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL MI13 HSL

assembled from its constituents A, C and whichever G is requested by the user. Implicit-factorization preconditioners
are more involved, and there is a large variety of different possibilities. The essential ideas are described in detail in

H. S. Dollar, N. I. M. Gould and A. J. Wathen. “On implicit-factorization constraint preconditioners”. In Large
Scale Nonlinear Optimization (G. Di Pillo and M. Roma, eds.) Springer Series on Nonconvex Optimization and Its
Applications, Vol. 83, Springer Verlag (2006) 61–82
and
H. S. Dollar, N. I. M. Gould, W. H. A. Schilders and A. J. Wathen “On iterative methods and implicit-factorization
preconditioners for regularized saddle-point systems”. SIAM Journal on Matrix Analysis and Applications, 28(1)
(2006) 170–189.

The Schur-complement factorization is based upon the decomposition

KG =

(
G 0
A I

)(
G−1 0

0 −S

)(
G AT

0 I

)
,

where the “Schur complement” S = C+AG−1AT . Such a method requires that S is easily invertible. This is often the
case when G is a diagonal matrix, in which case S is frequently sparse, or when m� n in which case S is small and a
dense Cholesky factorization may be used.

When C = 0, the null-space factorization is based upon the decomposition

KG = P

 G11 0 I
G21 I AT

2 A−T
1

A1 0 0

 0 0 I
0 R 0
I 0 −G11

 G11 GT
21 AT

1
0 I 0
I A−1

1 A2 0

PT ,

where the “reduced Hessian”

R = (−AT
2 A−T

1 I)
(

G11 GT
21

G21 G22

)(
−A−1

1 A2
I

)
and P is a suitably-chosen permutation for which A1 is invertible. The method is most useful when m≈ n as then the
dimension of R is small and a dense Cholesky factorization may be used.

5 EXAMPLE OF USE

Suppose we wish to solve the linear system (1.3) with matrix data

H =

 1 4
2

4 3

 , A =

(
2 1

1 1

)
and C =

(
1

1

)
and right-hand sides

a =

 7
4
8

 and b =

(
2
1

)
.

Then storing the matrices in sparse co-ordinate format, we may use the following code:

PROGRAM HSL_MI13_EXAMPLE
USE HSL_MI13_double ! double precision version
USE HSL_ZD11_double
IMPLICIT NONE
TYPE (ZD11_type) :: H, A, C

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 12

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL HSL MI13

DOUBLE PRECISION, ALLOCATABLE, DIMENSION(:) :: SOL
TYPE (MI13_data_type) :: data
TYPE (MI13_control_type) :: control
TYPE (MI13_inform_type) :: inform
INTEGER :: stat
INTEGER :: n = 3, m = 2, h_ne = 4, a_ne = 4, c_ne = 1
! start problem data
ALLOCATE(SOL(n + m))
SOL(1 : n) = (/ 7.0, 4.0, 8.0 /) ! RHS a
SOL(n + 1 : n + m) = (/ 2.0, 1.0 /) ! RHS b
! sparse co-ordinate storage format
CALL ZD11_put(H%type, ’COORDINATE’ ,stat=stat) ! Specify co-ordinate
CALL ZD11_put(A%type, ’COORDINATE’ ,stat=stat) ! storage for H, A and C
CALL ZD11_put(C%type, ’COORDINATE’ ,stat=stat)
ALLOCATE(H%val(h_ne), H%row(h_ne), H%col(h_ne))
ALLOCATE(A%val(a_ne), A%row(a_ne), A%col(a_ne))
ALLOCATE(C%val(c_ne), C%row(c_ne), C%col(c_ne))
H%val = (/ 1.0, 2.0, 3.0, 4.0 /) ! matrix H
H%row = (/ 1, 2, 3, 3 /) ! NB lower triangle
H%col = (/ 1, 2, 3, 1 /) ; H%ne = h_ne
A%val = (/ 2.0, 1.0, 1.0 ,1.0 /) ! matrix A
A%row = (/ 1, 1, 2, 2 /)
A%col = (/ 1, 2, 2, 3 /) ; A%ne = a_ne
C%val = (/ 1.0 /) ! matrix C
C%row = (/ 2 /) ! NB lower triangle
C%col = (/ 1 /) ; C%ne = c_ne
! problem data complete
CALL MI13_initialize(data, control) ! Initialize control parameters
control%preconditioner = 2 ! Exact factorization
! factorize matrix
CALL MI13_form_and_factorize(n, m, H, A, C, data, control, inform)
IF (inform%status < 0) THEN ! Unsuccessful call

WRITE(6, "(’ MI13_form_and_factorize exit status = ’, I6) ") &
inform%status

STOP
END IF
! solve system
CALL MI13_solve(n, m, A, C, data, control, inform, SOL)
IF (inform%status == 0) THEN ! Successful return

WRITE(6, "(’ MI13: Solution = ’, /, (5ES12.4))") SOL
ELSE ! Error returns

WRITE(6, "(’ MI13_solve exit status = ’, I6) ") inform%status
END IF
CALL MI13_terminate(data, control, inform) ! delete internal workspace

END PROGRAM HSL_MI13_EXAMPLE

This produces the following output:

MI13: Solution =
1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00

The same problem may be solved holding the data in a sparse row-wise storage format by replacing the lines

! sparse co-ordinate storage format

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 13

HSL MI13 v1.2.0
Documentation date: May 30, 2023

HSL MI13 HSL

...
! problem data complete

by

! sparse row-wise storage format
CALL ZD11_put(H%type, ’SPARSE_BY_ROWS’, stat=stat) ! Specify sparse-by-rows
CALL ZD11_put(A%type, ’SPARSE_BY_ROWS’, stat=stat) ! storage for H, A and C
CALL ZD11_put(C%type, ’SPARSE_BY_ROWS’, stat=stat)
ALLOCATE(H%val(h_ne), H%col(h_ne), H%ptr(n + 1))
ALLOCATE(A%val(a_ne), A%col(a_ne), A%ptr(m + 1))
ALLOCATE(C%val(c_ne), C%col(c_ne), C%ptr(m + 1))
H%val = (/ 1.0, 2.0, 3.0, 4.0 /) ! matrix H
H%col = (/ 1, 2, 3, 1 /) ! NB lower triangular
H%ptr = (/ 1, 2, 3, 5 /) ! Set row allocatables
A%val = (/ 2.0, 1.0, 1.0, 1.0 /) ! matrix A
A%col = (/ 1, 2, 2, 3 /)
A%ptr = (/ 1, 3, 5 /) ! Set row allocatables
C%val = (/ 1.0 /) ! matrix C
C%col = (/ 1 /) ! NB lower triangular
C%ptr = (/ 1, 1, 2 /) ! Set row allocatables

! problem data complete

or using a dense storage format with the replacement lines

! dense storage format
CALL ZD11_put(H%type, ’DENSE’, stat=stat) ! Specify dense
CALL ZD11_put(A%type, ’DENSE’, stat=stat) ! storage for H, A and C
CALL ZD11_put(C%type, ’DENSE’, stat=stat)
ALLOCATE(H%val(n * (n + 1) / 2))
ALLOCATE(A%val(n * m))
ALLOCATE(C%val(m * (m + 1) / 2))
H%val = (/ 1.0, 0.0, 2.0, 4.0, 0.0, 3.0 /) ! H
A%val = (/ 2.0, 1.0, 0.0, 0.0, 1.0, 1.0 /) ! A
C%val = (/ 0.0, 1.0, 0.0 /) ! C

! problem data complete

respectively.
If instead H had been the diagonal matrix

H =

 1
0

3

but the other data is as before, the diagonal storage scheme might be used for H, and in this case we would instead

CALL ZD11_put(H%type, ’DIAGONAL’, stat=stat) ! Specify dense storage for H
ALLOCATE(H%val(n))
H%val = (/ 1.0, 0.0, 3.0 /) ! Hessian values

Notice here that zero diagonal entries are stored.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 14

HSL MI13 v1.2.0
Documentation date: May 30, 2023

