
HSL MI29
PACKAGE SPECIFICATION HSL

1 SUMMARY

This package solves the n× n unsymmetric linear system Ax = b using the iterative method restarted MPGMRES,
otherwise known as MPGMRES(m). MPGMRES(m) is itself a generalization of the standard right-preconditioned gen-
eralized minimal residual method with restarts (GMRES(m)) that allows the user to employ multiple preconditioners
at each iteration.
MPGMRES comes in two variants: complete and selective. Complete MPGMRES finds the approximation which mini-
mizes the 2-norm of the residual over some space, termed the multi-Krylov space, which is defined by the choice of
preconditioners [1]. This search space grows exponentially with the iteration number, and so this version is generally
to be avoided in practice, but useful in diagnostics. A selective version of MPGMRES finds an approximation to the
solution in some subspace of the full multi-Krylov space, the dimension of which will grow only linearly with the
iteration number. The use of both variants is supported in this package.
Reverse communication is used for preconditioning operations and matrix-vector/matrix-matrix products with A.

ATTRIBUTES — Version: 1.1.0 (15 April 2015) Types: Real, Double. Calls: FA14, BLAS: copy, nrm2,
dot, scal, ger, swap, axpy, rot, rotg, trsv, gemv, gemm, LAPACK: orgqr, geqp3, ilanev.

Original date: March 2013. Origin: T. Rees, Rutherford Appleton Laboratory. Language: Fortran 2003 subset
(F95+TR155581). Remark: None.

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

Access to the package requires a USE statement such as

Single precision version
USE MI29 single

Double precision version
USE MI29 double

If it is required to use both modules at the same time, the derived types (Section 2.2) and the subroutines (Section 2.3)
must be renamed in one of the USE statements.
The following procedures are available to the user:

(a) MI29 solve takes the matrix A and the right-hand side b, and solves the linear system using MPGMRES(m).
MI29 solve uses reverse communication for preconditioning operations and matrix-vector/matrix-matrix prod-
ucts.

(b) MI29 TruncStep can optionally be called by the user before applying the multi-preconditioning step, and returns
a matrix with columns processed ready for multi-preconditioning in a way controlled by the user.

(c) MI29 finalize should be called after all other calls to HSL MI29 are complete for a particular dimension, number
of preconditioners, and choice of controls. MI29 finalize deallocates components of the derived types.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 1

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL MI29 HSL

2.2 The derived data types

For each problem the user must employ the derived types defined by the module to declare scalars of the types
MI29 keep, MI29 control, and MI29 info. The following pseudocode illustrates this.

use HSL_MI29_double
...
type (MI29_keep) :: keep
type (MI29_control) :: control
type (MI29_info) :: info
...

The components of MI29 keep are private and are used to pass data between the subroutines of the package. The
components of the other derived types are explained in Sections 2.3.5 and 2.3.6.

2.3 Argument lists and calling sequences

2.3.1 Integer, real and package types

INTEGER denotes default integer. REAL denotes default real if the single precision version or the complex version is
being used, and double precision real if the double precision version is being used. We use the term package type
to mean default real if the single precision version is being used, and double precision real for the double precision
version.

2.3.2 The solve phase

MPGMRES(m) may be applied to solve the linear system Ax = b by making a series of calls as follows:
call MI29 solve(action,n,t,restart,x,b,W,locY,Z,locZ,keep,control,info) .

action is a scalar INTENT(INOUT) argument of type INTEGER. Prior to the first call to MI29 solve, action must be
set by the user to 0. On each exit, action indicates the action required by the user. Possible values of action
and the action required are as follows:

-1 An error has occurred and the user must terminate the computation (see info%flag).

1 If control%test convergence = .true., convergence has been achieved and the user should terminate
the computation. If control%test convergence = .false., the user may test for convergence. If the
user does not wish to test for convergence at this iteration, or if convergence has not been achieved, the
user must recall MI29 solve without changing any of the arguments.

2 The user must perform the matrix-matrix product

Y = AZ (2.1)

and recall MI29 solve. The matrix Y is held in the first n entries of columns locY(1) to locY(2) of
array W, i.e., W(1:n,locY(1):locY(2)). The matrix Z is held in the first n entries of columns locZ(1) to
locZ(2) of array Z, i.e., Z(1:n,locY(1):locY(2)).

3 The user must perform an appropriate multi-preconditioning operation on the matrix Y .

• If a selective version of MPGMRES is desired (highly recommended), the user can call the subrou-
tine MI29 TruncStep to access some preset default truncations (see section 2.3.3). The particular
truncation used is set by changing the control%trunc method parameter.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 2

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL HSL MI29

– If control%trunc method>1 (default), then the user must return the matrix | |
P1Yout(:,1) · · · PtYout(:,1)

| |

 (2.2)

in columns locZ(1) to locZ(2) of Z. Here Yout is the matrix output from the call to MI29 TruncStep
and Pi denotes the application of preconditioner i.

– If control%trunc method < 1, then the user must return

Z=

 | |
P1Yout(:,1) · · · PtYout(:,t)

| |

 , (2.3)

where, again, Yout is the matrix output from the call to MI29 TruncStep.
– Alternatively, in the (default) case where control%storeZ = .true., the advanced user can

bypass calling MI29 TruncStep and return Z where columns locZ(1) to locZ(2) have been set
to the result of any multi-preconditioning routine on columns locY(1) to locY(2) of W.

• If complete MPGMRES is required, then the user must return the array Z, where columns locZ(1) to
locZ(2) have been updated so that

Z(:,locZ(1):locZ(2))=

 | |
P1W(:,locY(1):locY(2)) · · · PtW(:,locY(1):locY(2))

| |

 , (2.4)

where P1,...,Pt are the preconditioners. Note that here the row dimension of Z will be t times that
of Y .

Once the multi-preconditioning routine has been executed, the user recalls MI29 solve.
Remark: If the user chooses not to store Z, so control%storeZ = .false., then the t preconditioners

must not change between iterations. If control%storeZ = .true. (default), then the preconditioners
may change between iterations. In this case a Flexible version of MPGMRES is executed.

4 The user must perform the final multipreconditioning step at the end of each outer MPGMRES iteration.
This only is required if the user has set control%storeZ = .false., since in this case another multipre-
conditioning step is needed at the end of every outer iteration to compute the approximate solution. The
user must return the array Z, where locZ(1) to locZ(2) have been updated so that

Z(:,locZ(1):locZ(2))=

 | |
P1W(:,1) · · · PtW(:,t)
| |

 . (2.5)

Here P1, ..., Pt denote the preconditioners, which cannot change from the preconditioners used when
action = 5 was returned.

n is a scalar INTENT(IN) argument of type default INTEGER that must hold the dimension of A. Restriction: n ≥ 1.

t is a scalar INTENT(IN) argument of type INTEGER that must hold the number of preconditioners to be used. Re-
striction: 1 ≤ t ≤ n.

restart is a scalar INTENT(IN) argument of type INTEGER that must be set by the user to the maximum number
of iterations performed by MPGMRES(m) between restarts; i.e. restart holds the m in MPGMRES(m). A
compromise between a large value of restart that reduces the overall number of iterations and a small value

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL MI29 HSL

that limits the storage required should be sought. Unfortunately, it is hard to make firm recommendations about
a suitable value as a good value is problem dependent.

If we ignore linearly dependent vectors, the dimension of the space over which selective (resp. complete)
MPGMRES minimizes the residual is kt (resp. (tk+1 − t)/(t − 1)) [1], where k is the (inner) iteration num-
ber and t is the number of preconditioners. Let ks denote the smallest number of iterations such that this
value is greater than n, the dimension of the matix to be solved. The value of ks is output to the user if
control%diagnostics level > 0. In the best case, where there are no linearly search directions, the theory
tells us the method will converge to the exact solution after ks iterations. If the restart parameter supplied is larger
than ks, then MI29 changes restart to ks+control%extra its. This value is also chosen if restart = 0 is
supplied. This variable must be preserved by the user between calls to MI29 solve. Restriction: restart≥0.

x is a rank-1 array INTENT(INOUT) of package type that contains the approximate solution computed by the algorithm.
If control%init guess = .true., then on the first call x should contain the initial guess. On exit with action
= 1, x contains the solution vector. x must be preserved by the user between calls to MI29 solve.

b is a rank-1 array INTENT(IN) of package type that contains the right hand side vector. b must be preserved by the
user between calls to MI29 solve.

W is a rank-2 array INTENT(INOUT) allocatable argument of package type with appropriate dimensions dependent on
the problem parameters n, restart and t which are calculated on the first call to MI29 solve. W contains space
to store the orthonormal basis vectors. On the first call to MI29 solve for any given column W must be passed
unallocated. This should be ensured by calling MI29 finalize for every change of matrix, right hand side, etc.
between initial calls to MI29 solve.

locY is a rank-1 array INTENT(INOUT) argument of type INTEGER and size 2. locY(1) describes the location of the
first column of Y in the array W, and locY(2) describes the location of the last column. This variable must be
preserved by the user between calls to MI29 solve.

Z is a rank-2 array INTENT(INOUT) allocatable argument of package type with appropriate dimensions dependent on
the problem parameters n, restart and t which are calculated on the first call to MI29 solve. Z is used to store
the matrix of search directions. On the first call to MI29 solve Z must be passed unallocated; any data that is in
Z will be overwritten. This should be ensured by calling MI29 finalize for every change of matrix, right hand
side, etc. between initial calls to MI29 solve.

locZ is a rank-1 array INTENT(INOUT) argument of type INTEGER and size 2. locZ(1) describes the location of the
first column of Z in the array Z, and locZ(2) describes the location of the last column. This variable must be
preserved by the user between calls to MI29 solve.

keep is a scalar INTENT(INOUT) argument of type MI29 keep. It is used to hold data about the preconditioner and
must be passed unchanged to the other subroutines.

control is a scalar INTENT(IN) argument of type MI29 control (see section 2.3.5).

info is a scalar INTENT(OUT) argument of type MI29 info (see section 2.3.6).

2.3.3 Selective multi-preconditioning

If a selective version of MPGMRES(m) is required, then when control is returned to the user with action = 3 the user
can access pre-set possible selection strategies by making a call of the following form:

call MI29 TruncStep(W,Yout,locY,n,keep,control,info)

W is a rank-2 array INTENT(IN) argument of package type with extents n and keep%tdW that contains the array W
output by MI29 solve.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 4

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL HSL MI29

Yout is a rank-2 array INTENT(OUT) argument of package type with extents n and t that contains columns of W
processed ready for the user to apply multi-preconditioning.

locY is a rank-1 array INTENT(IN) of type INTEGER and size 2 that contains the array locY output by MI29 solve.

n is a scalar INTENT(IN) argument of type default INTEGER that contains the integer n input to MI29 solve.

keep is a scalar INTENT(INOUT) argument of type MI29 keep. It is used to hold data about the preconditioner and
must be passed unchanged to the other subroutines.

control is a scalar INTENT(IN) argument of type MI29 control (see section 2.3.5).

info is a scalar INTENT(OUT) argument of type MI29 info (see section 2.3.6).

2.3.4 The finalization phase

A call of the following form must be made after all other calls are complete for a particular problem (including after an
error return that does not allow the computation to continue). This deallocates components of the derived data types.

call MI29 finalize(W,Z,keep,control,info)

W is a rank-2 INTENT(INOUT) array of package type that contains the array W output by MI29 solve.

Z is a rank-2 INTENT(INOUT) array of package type that contains the array Z output by MI29 solve.

keep is a scalar INTENT(INOUT) argument of type MI29 keep. It is used to hold data about the preconditioner.

control is a scalar INTENT(IN) argument of type MI29 control (see section 2.3.5).

info is a scalar INTENT(OUT) argument of type MI29 info (see section 2.3.6).

2.3.5 The derived data type for holding control parameters

The derived data type MI29 control is used to hold controlling data. The components, which are automatically given
default values in the definition of the type, are:

Printing controls

diagnostics level is a scalar variable of type default INTEGER that is used to control the amount of informational
output which is required.

< 0 No informational output will occur.
= 0 Error and warning messages only.
= 1 As 0, plus basic informational messages will be printed.
= 2 As 1, plus the norm of the residual at each inner iteration and the current solution vector at each outer

iteration will be printed.

The default is diagnostics level = 0.

unit diagnostics is a scalar variable of type default INTEGER that holds the stream number for informational and
diagnostic messages. Printing is suppressed if unit diagnostics< 0. The default is unit diagnostics= 6.

unit error is a scalar variable of type default INTEGER that holds the stream number for error messages. Printing is
suppressed if unit error < 0. The default is unit error = 6.

unit warning is a scalar variable of type default INTEGER that holds the stream number for warning messages.
Printing is suppressed if unit warning < 0. The default is unit warning = 6.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 5

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL MI29 HSL

Controls used by MI29 solve

abs tol is a scalar of type REAL that sets the absolute convergence tolerance. The default value is 0. See the descrip-
tion of control%test convergence for more details.

extra its is a scalar of type INTEGER which sets how many inner iterations more the theoretical amount needed to
complete if restart is zero or too large (see Section 2.3.2). The default value is 1.

init guess is a scalar of type LOGICAL that controls whether the user wishes to supply an initial guess (.true.) or
use the default starting vector of (0, . . . ,0)T (.false.). The default value is .false..

max its is a scalar of type INTEGER that determines the maximum number of (outer) iterations allowed. It has default
value -1 and in this case the maximum number of iterations allowed is 2n. If the user does not want the
maximum to be 2n, max its can be set to the desired value. Values of max its≤ 0 are treated as if they were
the default.

rel tol is a scalar of type REAL that sets the relative convergence tolerance. The default value is
√

ε, where ε is the
relative machine precision as returned by epsilon(). See test convergence for more details.

selective is a scalar of type LOGICAL that controls whether selective or complete MPGMRES is used. The default is
selective, where the value is set to .true.. Complete MPGMRES is obtained by setting this value to .false. ;
this option is only recommended for diagnostic purposes, as the storage requirements are significantly higher.

store Z is a scalar of type LOGICAL that controls whether or not to store the array Z:

.true. Stores the array, and this option requires roughly double the storage. Note that if we store Z, then the
method becomes equivalent to a flexible method and the preconditioners may change at each iteration.

.false. Calculates Z from the Vi’s when computing the solution x. This options requires another multiprecon-
ditioning step.

The default is .false..

test convergence is a scalar of type LOGICAL that controls whether the convergence test offered by MI29 is to be
used. It has default value .true., and in this case the computed solution x is accepted if

‖b−Ax‖2 ≤max(‖b−Ax(0)‖2 rel tol,abs tol),

where x(0) is the initial estimate of the solution. If the user wishes to apply their own convergence test, then
test convergence should be set to .false.. In this case control is returned to the user with action=1 at the
start of every outer iteration for a convergence test to be applied.

Controls used by MI29 TruncStep

seed is a scalar of type INTEGER that sets a new generator word for the random number generator, FA14. This is used
for the options of control%trunc method that have a random element. It must be an integer between 1 and
231−1(= 2147483647). The default value is 2013.

trunc method is a scalar of type INTEGER which controls the type of selcection strategy used upon calling the sub-
routine MI29 TruncStep. If this value is positive, then the user must apply each of the preconditioners to the
first column of the n× t matrix returned. If this value is negative, the user should apply the first preconditioner
to column one, the second to column two, etc (see section 2.3.2). Supported values are:

1 Returns Yout = Y*e, where e denotes the vector of ones .

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL HSL MI29

2 Returns Yout = Y*u, where u is a vector with entries uniformly distributed in the range [0,1]. The random
vector changes at each iteration.

-1 Returns Yout(:,i) = Y(:,i).
-2 Returns Yout(:,i) = Y(:,t-i+1).

-3 Returns Yout(:,i) =

{
Y(:,i) if i even
Y(:,t-i+1) if i odd

-4 Returns Yout(:,i) = Y(:,π(i)) , where π(·) denotes a random permutation of [1, . . . , t]. The perturba-
tion changes at each iteration.

In the above, Y = W(:,locY(1):locY(2)). The default is 1.

2.3.6 The derived data type for holding information

The derived data type MI29 info is used to hold parameters that give information about the progress and needs of the
algorithm. The components of MI29 info are:

flag is a scalar of type default INTEGER that gives the exit status of the subroutine. See section 2.4 for details.

inner iterations is a scalar of type default INTEGER that, after a call to MI29 solve, contains the number of inner
iterations performed.

outer iterations is a scalar of type default INTEGER that, after a call to MI29 solve, contains the number of outer
iterations performed.

stat is a scalar of type default INTEGER that is used to hold the Fortran stat parameter.

2.4 Warning and error messages

A successful return from a subroutine in the package is indicated by info%flag having the value zero. A negative
value is associated with an error message that by default will be output on unit control%unit error. Possible
negative values are:

-1 Returned by MI29 solve if n< 1.

-2 Returned by MI29 solve if restart< 0.

-3 Returned by MI29 solve if t < 1 or t > n.

-4 Allocation error. The stat parameter is returned in info%stat.

-5 Dellocation error. The stat parameter is returned in info%stat.

-6 Returned by MI29 solve if the maximum number of iterations determined by the control parameter max its has
been exceeded.

-7 Returned by MI29 solve if all search directions computed are linearly dependent.

-8 Returned by MI29 TruncStep if an unsupported choice of control%trunc method is passed.

A positive value is associated with a warning message that by default will be output on unit control%unit warning.
Possible positive values are:

+1 Returned by MI29 solve if the user-supplied convergence tolerance control%rel tol lies outside the interval
(u,1.0), where u = EPSILON(rel tol), and the control parameter test convergence is set to .true. . A
tolerance of

√
EPSILON(rel tol) is used in the convergence test.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 7

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL MI29 HSL

2.5 Information printed

If control%diagnostics level is positive, information about the progress of the algorithm will be printed on unit
control%unit diagnostics.

3 GENERAL INFORMATION

Workspace: Provided automatically by the module.

Other routines called directly: HSL MI29 calls the BLAS kernels copy, nrm2, dot, scal, ger, swap,
axpy, rot, rotg, trsv, gemv, gemm and the LAPACK kernels orgqr, geqp3, ilanev (& deps).

Input/output: Output is provided under the control of control%diagnostics level, which allows error, warning
and diagnostics messages to be printed on units control%unit error, control%unit warning and
control%unit diagnostics, respectively.

Restrictions: n≥1, restart≥0, n ≥ t≥1.

4 METHOD

The Multi-Preconditioned Generalized Minimal Residual method is due to Greif, Rees and Szyld [1]. The method
forms a block-Arnoldi-style decomposition, orthogonalizing vectors chosen from a multi-Krylov subspace, and then
minimizes the residual over the space of search vectors by solving a least squares problem with Givens rotations. The
algorithm used by MI29 solve takes the following form:

Check the input data for errors. Set k = 0
do j = 0,1,2,. . . , max its

Return to the user with control%action = 2 to obtain Ax(j).
Compute the residual r(j) = b−Ax(j).
if control%test convergence = .true. then,

if ||r(j)||2 ≤max(||r(0)||2∗control%rel tol,control%abs tol), convergence has been achieved:
Return with control%action = 1.

else
Return with control%action = 1 to allow the user to check for convergence.

end if
Compute V1 = r(j)/||r(j)||2
Set s1 = r(j)/||r(j)||2
do i = 1,2, . . . ,restart

Return to the user with control%action= 4 to obtain Zi = multi−precondition(Vi)
Return to the user with control%action= 2 to obtain W = AZi
Orthogonalize columns of W against those of [V1 · · ·Vi] using the modified block Gram-Schmidt process
Check for columns which are linearly dependent
Compute ‘skinny’ QR factorization of W =Vi+1Hi+1,i.
Form a trapezoidal matrix H that is a basis for the Krylov subspace spanned by V1, . . . ,Vi+1

Use H to calculate the residual of the vector x(k)+ yi, where yi lies in the
multi-Krylov subspace and is selected to minimize ||b−A(x(j)+ y)||2.

If this residual is small, exit the j-loop
end do
if control%store Z = .false. then

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL HSL MI29

Return with control%action = 5 to perform final multipreconditioning.
end if
Set x(j+1) = x(j)+[Z1 . . .Zi]yi

end do

References

[1] C. Greif, T. Rees, D.B. Szyld (2011). Multi-Preconditioned GMRES. UBC CS TR-2011-12

5 EXAMPLE OF USE

The following program illustrates the calling sequence for MI29 in order to solve the linear system Ax = b, where

A =



1 2
1 4 1

1 4 1
1 4 1

1 4 1
1 4 1

1 4 1
1 4 1

1 4 1
2 4


b =



3
2
2
2
2
2
2
2
2
1


The inverse of the diagonal of A is used as the first preconditioner and the lower triangluar part of A is used as the
second preconditioner.
The following program illustrates the calling sequence for HSL MI29:

PROGRAM hsl_mi29ds

USE hsl_mi29_double
IMPLICIT NONE

INTEGER, PARAMETER :: wp = kind(1.0D0)
INTEGER, PARAMETER :: n = 10
INTEGER :: outputstr = 6 ! stream number for ouput
INTEGER :: action ! informs the user of the action required
INTEGER :: t ! number of preconditioners to be used
INTEGER :: restart ! max number of inner iterations
REAL(wp), DIMENSION(n) :: x ! initial/current guess of solution
REAL(wp), DIMENSION(n) :: b ! rhs vector
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: W ! array to contain V, r, etc.
INTEGER, DIMENSION(2) :: locy ! array containing start and end

! of current Y
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: Z ! array to contain current Z
INTEGER, DIMENSION(2) :: locz ! array containing start and end

! of current Z
REAL(wp), DIMENSION(:,:), ALLOCATABLE :: Yout !an array containing processed Z
INTEGER :: i

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 9

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL MI29 HSL

TYPE (mi29_keep) :: keep
TYPE (mi29_control) :: control
TYPE (mi29_info) :: info

! selective MPGMRES
control%selective = .true.

action = 0 ! let mi29 know it’s the first call
t = 2 ! solve with two preconditioners
restart = 7 ! restart parameter for the inner iteration

b(1) = 3.0
b(2:n-1) = 2.0
b(n) = 1.0

! set the relative tolerance
control%rel_tol = 1e-4

! Set up an n x t array for Yout
allocate(Yout(n,t),stat = info%stat)
! At first iteration we pass W, Z to mi29_solve unallocated, and the
! subroutine allocates for us

do
call mi29_solve(action,n,t,restart,x,b,W,locY,Z,locZ,keep,control,info)
select case (action)

case(-1) !!! Error !!!
write(outputStr,’(a,i2)’) ’Error. Flag = ’, info%flag
exit

case (1) !!! convergence !!!
! method has converged or reached max number of iterations
if (info%flag .ne. -6) then

write(outputStr,’(a,i2,a,i2)’) ’Method converged in ’, &
info%inner_iterations,’ inner iterations and ’, &
info%outer_iterations,’ outer iterations.’
write(outputStr,’(a)’) ’x:’
do i = 1,n

write(outputStr,’(3f10.2)’) x(i)
end do

else
write(outputStr,’(a)’) ’Method failed to converge’

end if
exit

case (2) !!! Perform M-M product !!!
call ApplyMatMatMult(W(1:n,locY(1):locY(2)),Z(1:n,locZ(1):locZ(2)),n)

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 10

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL HSL MI29

case (3) !!! Multi-precondition !!!
! send to mi29_TruncStep to process the vectors for
! multi-preconditioning
call mi29_TruncStep(W,Yout,locY,n,keep,control,info)
! Preconditioner 1 -- Diag(A)
call ApplyP1(Z(1:n,locZ(1)),Yout(1:n,1),n)
! Preconditioner 2 -- LT(A)
call ApplyP2(Z(1:n,locZ(1)+1),Yout(1:n,1),n)
! send back to mi29_Solve

case(4) !!! Final multiprecondition !!!
! since we compute, not store, Z...
! Preconditioner 1 -- Diag(A)
call ApplyP1(Z(1:n,locZ(1)),W(1:n,1),n)
! Preconditioner 2 -- LT(A)
call ApplyP2(Z(1:n,locZ(2)),W(1:n,2),n)
! Send back to mi29_Solve

end select
end do

! clean up
deallocate(Yout,stat = info%stat)
! ensure mi29_finalize is called before calling mi29_solve again
! for a different problem
call mi29_finalize(W,Z,keep,control,info)

CONTAINS

SUBROUTINE ApplyMatMatMult(W,Z,n)
!! Apply matrix
!! (/ 1 2 0 ... ;
!! 1 4 1 ... ;
!! 0 1 4 1 ...;
!!
!! ... 2 4 /)
!! to a matrix Z
!! giving W = A*Z
REAL(wp), DIMENSION(:,:), INTENT(IN) :: Z
REAL(wp), DIMENSION(:,:), INTENT(INOUT):: W
INTEGER, INTENT(IN) :: n
INTEGER :: i

W(1,:) = 1.0*Z(1,:) +2.0*Z(2,:)
do i=2,n-1

W(i,:) = 1.0*Z(i-1,:) + 4.0*Z(i,:) + 1.0*Z(i+1,:)
end do
W(n,:) = 2.0*Z(n-1,:) + 4.0*Z(n,:)

END SUBROUTINE ApplyMatMatMult

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 11

HSL MI29 v1.1.0
Documentation date: May 30, 2023

HSL MI29 HSL

SUBROUTINE ApplyP1(Z,Y,n)
!! Apply diagonal as a prec
REAL(wp), DIMENSION(:), INTENT(INOUT) :: Z
REAL(wp), DIMENSION(:), INTENT(IN) :: Y
INTEGER, INTENT(IN) :: n

Z(1) = Y(1)
Z(2:n) = 0.25*(Y(2:n))

END SUBROUTINE ApplyP1

SUBROUTINE ApplyP2(Z,Y,n)
!! Apply lower triangular as a prec
REAL(wp), DIMENSION(:), INTENT(IN) :: Y
REAL(wp), DIMENSION(:), INTENT(INOUT) :: Z
INTEGER, INTENT(IN) :: n
INTEGER :: i

Z(1) = (Y(1))
pre2: do i = 2,n-1

Z(i) = 0.25*(Y(i) - Z(i-1))
end do pre2
Z(i) = 0.25*(Y(i) - 2.0*Z(i-1))

END SUBROUTINE ApplyP2

END PROGRAM hsl_mi29ds

This produces the following output:

Method converged in 6 inner iterations and 0
outer iterations.

x:
4.64

-0.82
0.64
0.25
0.36
0.33
0.34
0.31
0.41
0.04

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 12

HSL MI29 v1.1.0
Documentation date: May 30, 2023

