
HSL MI30
PACKAGE SPECIFICATION HSL

1 SUMMARY

Let K be an n×n sparse symmetric saddle-point matrix of the form

K =

(
A BT

B −C

)
,

where A is (n−m)× (n−m) symmetric positive definite, B is rectangular m× (n−m) and of full rank (m < n), and C
is m×m symmetric positive semi-definite. HSL MI30 computes a signed incomplete Cholesky factorization. That
is, a factorization of the form LDLT , where L is lower triangular and D is diagonal with n−m positive entries and
m negative entries. The matrix K is optionally reordered, scaled and, if necessary, shifted to avoid breakdown of the
factorization so that the LDLT incomplete factorization of the matrix

K̄ = SQT
(

A BT

B −C

)
QS+

(
α(1)I 0

−α(2)I

)
is computed, where Q is a permutation matrix, S is a diagonal scaling matrix and α(1 : 2) are non-negative shifts.

The incomplete factorization may be used for preconditioning when solving the saddle-point system Kx = b. A
separate entry performs the preconditioning operation

y = Pz

where P = (L D LT
)−1, with L = QS−1L, is the incomplete signed Cholesky factorization preconditioner. An option

exists to use P = (L |D| LT
)−1 as the preconditioner.

The incomplete factorization is based on a matrix decomposition of the form

K = (L+R) D (L+R)T −E, (1.1)

where L is lower triangular with unit diagonal entries, R is a strictly lower triangular matrix with small entries that is
used to stabilize the factorization process, D is a diagonal matrix, and E has the form

E = RDRT +F +FT , (1.2)

where F is strictly lower triangle. E is not computed explicitly and all terms in F are ignored, while the matrix R
is used in the computation of L but is then discarded. The user controls the dropping of small entries from L and R
and the maximum number of entries within each column of L and R (and thus the amount of memory for L and the
intermediate work and memory used in computing the incomplete factorization).

Note: If an incomplete Cholesky factorization preconditioner for a symmetric positive-definite system is required,
HSL MI28 should be used.

ATTRIBUTES — Version: 1.4.1 (1 November 2023). Interfaces: Fortran, MATLAB. Types: Real (single, dou-
ble). Calls: KB07, MC61, HSL MC64, HSL MC68, HSL MC69, MC77, copy and (optionally using METIS version 4.x)
METIS NODEND. Language: Fortran 2003 subset (F95+TR155581). Date: March 2014. Origin: J. A. Scott, STFC
Rutherford Appleton Laboratory and M. Tůma, Institute of Computer Science, Academy of Sciences of the Czech
Republic. Remark: The development of this package was partially supported by EPSRC grant EP/I013067/1 and by
Grant Agency of the Czech Republic grant P201/13-06684S.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 1

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL MI30 HSL

2 HOW TO USE THE PACKAGE

2.1 Calling sequences

Access to the package requires a USE statement

Single precision version
use hsl mi30 single

Double precision version
use hsl mi30 double

If it is required to use more than one module at the same time, the derived types (see Section 2.2) must be renamed in
one of the USE statements.

The following procedures are available to the user:

(a) mi30 factorize computes an incomplete signed Cholesky factorization.

(b) mi30 precondition performs the preconditioning operation y = Pz, where P is the incomplete factorization
preconditioner computed by mi30 factorize.

(c) mi30 solve solves the system L D y = SQT z (or L |D|y = SQT z or LT S−1QT y = z), where L is the incomplete
factor computed by mi30 factorize and |D| has entries |di j|.

(d) mi30 finalise frees memory that has been allocated by mi30 factorize.

2.2 The derived data types

For each problem, the user must employ the derived types defined by the module to declare scalars of the types
mi30 keep, mi30 control and mi30 info. The following pseudocode illustrates this.

use hsl_mi30_double
...
type (mi30_keep) :: keep
type (mi30_control) :: control
type (mi30_info) :: info

...

The components of mi30 control and mi30 info are explained in Sections 2.5 and 2.6. The components of mi30 keep
are used to pass data between the subroutines of the package and must not be altered by the user.

2.3 METIS

The HSL MI30 package optionally uses the METIS graph partitioning library available from the University of Min-
nesota website. If METIS is not available, the user must link with the supplied dummy subroutine METIS NodeND. In
this case, the METIS ordering option will not be available to the user and, if selected, mi30 factorize will return
with an error.
Important: At present, HSL MI30 only supports METIS version 4, not the latest version 5 releases.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 2

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL HSL MI30

2.4 Argument lists and calling sequences

2.4.1 Optional arguments

We use square brackets [] to indicate OPTIONAL arguments. In each call, optional arguments follow the argument
info. Since we reserve the right to add additional optional arguments in future releases of the code, we strongly
recommend that all optional arguments be called by keyword, not by position.

2.4.2 Integer and package types

INTEGER denotes default INTEGER and INTEGER(long) denotes INTEGER(kind=selected int kind(18)). We use
the term package type to mean default real if the single precision version is being used and double precision real for
the double precision version.

2.4.3 To compute a signed incomplete Cholesky factorization

To compute a signed incomplete Cholesky factorization, the lower triangular part of the matrix K must be held in
compressed column storage and a call of the following form must be made:

call mi30_factorize(n, m, ptr, row, val, lsize, rsize, keep, control, info[, scale, perm])

n is an INTENT(IN) scalar of type INTEGER that must hold the order of the matrix K. Restriction: 2≤n.

m is an INTENT(IN) scalar of type INTEGER that must hold the order of the (2,2) block −C. Restriction: 1≤m≤n-1.

ptr is an INTENT(INOUT) rank-1 array of type INTEGER and size n+1. ptr(j) must be set by the user so that ptr(j)
is the position in row of the first entry in column j and ptr(n+1) must be set to one more than the number of
matrix entries being input by the user. ptr is only changed on exit if control%check is set to .true. (the
default) and duplicates and/or out-of-range indices are found.

row is an INTENT(INOUT) rank-1 array of type INTEGER and size at least ptr(n+1)-1. It must hold the row indices
of the entries of the lower triangular part of K with the row indices for the entries in column 1 preceding those
for column 2, and so on. Within each column, the row indices must be in increasing order (so that all entries of
the column in the (1,1) block A must precede those in the (2,2) block −C). The diagonal entry in the first n−m
columns must be present (but may have value zero). If control%check is set to .true. (the default), row is
checked for errors and duplicates and out-of-range indices are removed; otherwise, row is unchanged.

val is an INTENT(INOUT) rank-1 array of package type and size at least ptr(n+1)-1. val(k) must hold the value
of the entry in row(k). If control%check is set to .true. (the default), on exit duplicates are summed and
out-of-range indices removed; otherwise, val is unchanged.

lsize is an INTENT(IN) scalar of type INTEGER that determines the maximum number of fill entries within each
column of the incomplete factor L. In general, increasing lsize improves the quality of the preconditioner but
increases the time to compute and then apply the preconditioner (see Section 4). Values less than 0 are treated
as 0.

rsize is an INTENT(IN) scalar of type INTEGER that determines the maximum number of entries within each column
of the strictly lower triangular matrix R that is used in the computation of the preconditioner. A rank-1 array of
type INTEGER and a rank-1 array of package type each of size rsize×n are allocated internally to hold R. Thus
the amount of memory used, as well as the amount of work involved in computing the preconditioner, depends
on rsize. Setting rsize > 0 generally leads to a higher quality preconditioner than using rsize = 0 (and
rsize ≥ lsize is generally recommended). Values less than 0 are treated as 0.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 3

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL MI30 HSL

keep is an INTENT(OUT) scalar of type mi30 keep. It is used to hold data about the problem being solved and must
be passed unchanged to mi30 precondition. The following components may be of interest to the user:

fact dinv is an allocatable rank-1 array of package type. On exit, it is allocated to have size n and fact dinv(k)
holds the value of the k-th diagonal entry of D−1.

fact ptr is an allocatable rank-1 array of type INTEGER(long). On exit, it is allocated to have size n+1,
fact ptr(j) holds the position in fact row of the first entry in column j of the computed factor L and
ptr(n+1) is set to one more than the number of entries in L.

fact row is an allocatable rank-1 array of type INTEGER. On exit, the first fact ptr(n+1)-1 entries hold
the row indices of the entries of the computed factor L, with the row indices for the entries in column 1
preceding those for column 2, and so on.

fact val is an allocatable rank-1 array of package type. On exit, fact val holds the values of the entries in
the computed factor L such that fact val(k) is the value of the entry in fact row(k).

scale is an allocatable rank-1 array of package type. On exit, if control%iscale > 0, it is allocated to have
size n and holds the scaling factors for A.

invp is an allocatable rank-1 array of type INTEGER. On exit, if control%iorder > 0, it is allocated to
have size n and specifies the permutation such that the j-th column of the permuted matrix QT KQ is the
invp(j)-th column of K (that is, invp(j) is the index of the j-th pivot).

perm is an allocatable rank-1 array of type INTEGER. On exit, if control%iorder > 0, it is allocated to have
size n and specifies the elimination ordering such that perm(i) holds the position of i-th column of K in
the elimination order.

control is an INTENT(IN) scalar of type mi30 control (see Section 2.5).

info is an INTENT(OUT) scalar of type mi30 info. Its components provide information about the execution of the
subroutine, as explained in Section 2.6.

scale is an optional INTENT(IN) rank-one array of package type and size n that must be present if control%order=5.
In this case, scale must be set by the user to hold scaling factors for A.

perm is an optional INTENT(IN) rank-one array of type INTEGER and size n that must be present if control%iorder=3.
In this case, the user must supply an elimination ordering such that perm(i) holds the position of the i-th col-
umn of K in the elimination order. A column with index j > n−m should only be ordered after all the columns
with index i≤ n−m for which ki j 6= 0 have been ordered; if this condition is not satisfied, a modified ordering
will be used (and returned in keep%perm).

2.4.4 To perform preconditioning operations

The signed incomplete Cholesky factorization preconditioner may be applied to compute y = Pz by making a call as
follows.

call mi30_precondition(job, n, keep, z, y, info)

job is an INTENT(IN) scalar of type INTEGER that must be set as follows:

1 if P = (L D LT
)−1 is to be used as the preconditioner (L = QS−1L).

2 if P = (L |D| LT
)−1 is to be used as the preconditioner.

n, keep: must be unchanged since the call to mi30 factorize.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 4

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL HSL MI30

z is an INTENT(IN) rank-1 array of package type and size n. It must be set by the user to hold the vector z to which
the incomplete factorization preconditioner P is to be applied.

y is an INTENT(OUT) rank-1 array of package type and size n. On exit, y contains Pz.

info is an INTENT(INOUT) scalar of type mi30 info. Only the component info%flag is accessed (see Section 2.6).

2.4.5 To perform solve operations

The system L Dy = SQT z, or L |D|y = SQT z or LT S−1QT y = z may be solved by making a call as follows.

call mi30_solve(job, n, keep, z, y, info)

job is an INTENT(IN) scalar of type INTEGER that must be set as follows:

1 if the solution of L Dy = SQT z is required,

2 if the solution of L |D|y = SQT z is required,

3 if the solution of LT S−1QT y = z is required.

n, keep: must be unchanged since the call to mi30 factorize.

z is an INTENT(IN) rank-1 array of package type and size n. It must be set by the user to the right-hand side vector z.

y is an INTENT(OUT) rank-1 array of package type and size n. On exit, y contains the solution vector y.

info is an INTENT(INOUT) scalar of type mi30 info. Only the component info%flag is accessed (see Section 2.6).

2.4.6 The finalisation subroutine

Once all other calls are complete for a problem or after an error return, a call should be made to free memory allocated
by hsl mi30 factorize using a call to mi30 finalise.

call mi30_finalise(keep, info)

keep is an INTENT(INOUT) scalar of type mi30 keep that must be passed unchanged. On exit, allocatable components
will have been deallocated.

info is an INTENT(INOUT) scalar of type mi30 info. Only the components info%flag and info%stat are ac-
cessed (see Section 2.6).

2.5 The control derived data type

The derived data type mi30 control is used to hold controlling data; it is used by mi30 factorize only. The
components are automatically given default values in the definition of the type.

Components that control printing

unit error is a scalar of type INTEGER with default value 6 that is used as the output stream for error messages. If it
is negative, these messages will be suppressed.

unit warning is a scalar of type INTEGER with default value 6 that is used as the output stream for warning messages.
If it is negative, these messages will be suppressed.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 5

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL MI30 HSL

Components that control the initial and subsequent choice of the shifts α(1 : 2).
Note that the aim is to choose the shifts to be as small as possible to avoid breakdown of the Cholesky factorization
process (see Section 4).

alpha is a rank-1 array of package type and size 2 with default values (0.0,0.0) that holds the initial shifts α(1 : 2).
Values less than zero are treated as zero.

lowalpha is a scalar of package type with default value 0.001 that controls the choice of the shift in the event of a
breakdown. Values less than or equal to zero are treated as the default.

maxshift is a scalar of type INTEGER with default value 3 that controls the maximum number of times the shift can
be decreased after a successful factorization with a positive shift. See Section 4 for details. Limiting maxshift
may reduce the factorization time but may result in a poorer quality preconditioner.

shift factor is a scalar of package type with default value 4.0 that controls how rapidly a shift is increased after
a breakdown. See Section 4 for details. Increasing shift factor may reduce the factorization time but may
result in a poorer quality preconditioner. Values less than one are treated as the default.

shift factor2 is a scalar of package type with default value 4.0 that controls how rapidly a shift is decreased after
a successful factorization with a positive shift. See Section 4 for details. Values less than one are treated as the
default.

small is a scalar of type REAL. Any pivot whose modulus is less than small is treated as zero and, if such a pivot is
encountered, the factorization breaks down, a shift is increased and the factorization restarted. The default in
the double version is 10−20 and in the single version is 10−12.

Components that control the dropping of small entries

tau1 and tau2 are scalars of package type with default values 0.001 and 0.0001. They control the dropping of entries
from L and R. In the computation of the incomplete factorization, entries of magnitude less than |tau1| are
dropped from L; those that are at least |tau2| but less than |tau1| may be included in R while those less than
|tau2| are dropped from R.

Other components

check is a scalar of type LOGICAL with default value .true.. If .true., the matrix data is checked for errors and the
cleaned matrix (duplicates are summed, out-of-range entries discarded and, within each column, the entries are
ordered by increasing row index) overwrites the user-supplied data in ptr, row and val. Otherwise, no checking
of the matrix data is carried out (it is important to note that any out-of-order entries or out-of-range entries or
duplicates may cause HSL MI30 to fail in an unpredictable way) and so it is recommended that the matrix data
is checked.

iorder is a scalar of type INTEGER with default value 6 that indicates the ordering that is required. The chosen
ordering is computed and then post-processed (see Section 4). Options available are:

≤ 0 no ordering.

1 A reverse Cuthill-McKee (RCM) ordering (computed using MC61) is used.

2 An approximate minimum degree (AMD) ordering (computed using HSL MC68) is used.

3 User-supplied ordering is used.

4 The rows are ordered by ascending degree.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 6

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL HSL MI30

5 METIS (nested dissection) ordering with default settings is used. If METIS is not supplied and this option is
requested, the routine will return immediately with an error.

6 A Sloan profile reduction ordering (computed using MC61) is used. This is the default.

If iorder>6, the default is used.

iscale is a scalar of type INTEGER with default value 1 that indicates the scaling that is required. Options available
are:

≤ 0 No scaling.

1 Scaling generated using the l2-norm of the columns of A. This is the default.

2 Scaling generated by applying the iterative method of the package MC77 for one iteration in the infinity norm
and three iterations in the one norm (equilibration ordering).

3 Scaling generated from a weighted bipartite matching using the package HSL MC64.

4 Diagonal scaling is used.

5 User-supplied scaling is used. The user must supply scaling factors for A.

If iscale>5, the default is used.

rrt is a scalar of type LOGICAL with default value .false. that is used to control whether the entries of RRT (see
(1.2)) that cause no additional fill-in in (1.1) are allowed (rsize > 0 only). Allowing such entries can improve
the quality of the preconditioner (although this is not guaranteed) but at some additional computational cost in
the factorization process. If rrt=.true. such entries are allowed; otherwise, they are not allowed.

2.6 The derived data type for holding information

The derived data type mi30 info is used to hold information from the execution of mi30 factorize. The components
are:

alpha is a rank-1 array of package type and size 2 that holds the final shifts (it is set to zero if no shifts are used).

band after is a scalar of type INTEGER. If control%iorder=1 or 6, band after holds the semibandwidth of A
after reordering; otherwise, it is set to 0.

band before is a scalar of type INTEGER. If control%iorder=1 or 6, band before holds the semibandwidth of A
before reordering; otherwise, it is set to 0.

dup is a scalar of type INTEGER that holds the number of duplicated indices removed from row.

flag is a scalar of type INTEGER that gives the exit status of the algorithm (details in Section 2.7).

flag61 is a scalar of type INTEGER that holds the exit status on return from MC61 (and is set to 0 if MC61 is not used).

flag64 is a scalar of type INTEGER that holds the exit status on return from HSL MC64 (and is set to 0 if HSL MC64 is
not used).

flag68 is a scalar of type INTEGER that holds the exit status on return from HSL MC68 (and is set to 0 if HSL MC68 is
not used).

flag77 is a scalar of type INTEGER that holds the exit status on return from MC77 (and is set to 0 if MC77 is not used).

nrestart is a scalar of type INTEGER that holds the number of restarts (after reducing a shift).

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 7

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL MI30 HSL

nshift is a scalar of type INTEGER that holds the number of non-zero shifts used.

oor is a scalar of type INTEGER that holds the number of out-of-range indices removed from row.

profile after is a scalar of package type. If control%iorder=1 or 6, profile after holds the profile of A after
reordering; otherwise, it is set to 0.0.

profile before is a scalar of package type. If control%iorder=1 or 6, profile before holds the profile of A
before reordering; otherwise, it is set to 0.0.

size r is a scalar of type INTEGER(long) that holds the size of the integer and real arrays that are used during the
factorization to hold R.

stat is a scalar of type INTEGER that holds the Fortran stat parameter.

2.7 Warning and error messages

A successful return from a subroutine in the package is indicated by info%flag having the value zero. A negative
value is associated with an error message that by default will be output on unit control%unit error.

Possible negative values are:

-1 memory allocation failed. The stat parameter is returned in info%stat.

-2 The array row is too small.

-3 The array val is too small.

-4 Either n or m is out of range (n<2, m<1 or m>n/2).

-5 Error in the array ptr.

-6 One or more diagonal entries in the (1,1) A-block is missing.

-7 Unexpected error returned by MC77. The MC77 exit status is returned in info%flag77.

-8 Unexpected error returned by HSL MC64. The HSL MC64 exit status is returned in info%flag64.

-9 HSL MC64 has found that K is structurally singular.

-10 The optional argument scale is not present when it should be.

-11 The optional argument perm is either not present when it should be or it does not hold a permutation.

-12 Unexpected error returned by MC61. The MC61 exit status is returned in info%flag61. Note that, if the matrix
has not been checked for errors and there are duplicated or out-of-range entries in row, mc61 will return an error
flag of -4 and the computation will terminate.

-13 Unexpected error returned by HSL MC68. The HSL MC68 exit status is returned in info%flag68. Note that this
error is returned if METIS ordering has been requested (control%iorder=5) but METIS is not linked).

-14 Memory deallocation failed. The stat parameter is returned in info%stat.

-15 All entries in one or more columns are out of range.

-16 One or more of the diagonal entries of the (2,2) block −C is positive.

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 8

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL HSL MI30

Positive values for info%flag are associated with a warning and can only be returned by mi30 factorize.
Possible positive values are:

+1 Out-of-range indices have been removed from row. The number of such entries is given in info%oor.

+2 Duplicated entries were found in row; these have been removed and the corresponding entries in val have been
summed. The number of such entries is given in info%dup.

+3 A warning has been issued by HSL MC64 that the computed scaling factors are large and may cause overflow when
used to scale the matrix. No scaling is used.

+4 A warning has been issued by MC61. The MC61 exit status is returned in info%flag61.

3 GENERAL INFORMATION

Input/output: Error messages on unit control%lp and warning and diagnostic messages on units control%wp and
control%mp, respectively. These have default value 6; printing of these messages is suppressed if the relevant
unit number is negative or if print level is negative.

Restrictions: 1≤m<n.

4 METHOD

mi30 factorize starts by optionally checking the matrix data for errors; this is done using HSL MC69. Checking
removes out-of-range entries, sums duplicates, and reorders the entries within each column by increasing row index.
A scaling and/or ordering is then optionally computed; HSL packages are used to do this. Unless a problem is known
to be well scaled, scaling is highly recommended. We impose a constraint on the ordering: a pivot corresponding
to a variable i in the (2,2) block −C can only be eliminated once all the variables that corresponding to the entries in
column i with row index j ≤ n−m have been eliminated (in graph terms, a C-node can only be eliminated once all its
A-node neighbours have been eliminated). Thus once an ordering has been computed using, for example, the Sloan
algorithm, it is modified to satisfy the above constraint before the factorization begins.

A left-looking sparse Cholesky algorithm is used to compute the signed incomplete factorization, one column at a
time. The parameters lsize and rsize control the amount of memory used as well as the amount of work involved
in computing the factorization. lsize controls the number of entries in the computed incomplete factor L (at most
lsize fill entries are permitted in each column of L) and rsize limits the number of entries in each column of the
matrix R. If rsize=0 and control%tau1=0.0, the incomplete factorization is essentially that of [1]. However, it
is generally advantageous (in terms of the quality of the preconditioner) to use rsize>0. Increasing lsize and/or
rsize increases the cost of the factorization (in terms of time and memory). Furthermore, increasing lsize leads to a
denser incomplete factorization (but one that is, in general, a better preconditioner), increasing the cost of each call to
mi30 precondition and mi30 solve. Values of lsize and rsize equal to 10 is often a reasonable choice but, if the
preconditioner is to be used for many problems, it may be worthwhile to experiment with a range of values to try and
get the best overall performance; smaller values may be used if the memory available is limited or larger values may
be used to try and obtain a higher quality preconditioner.

Dropping parameters control%tau1 and control%tau2 are used to further sparsify L and R, respectively. As
each column of L is computed, entries of absolute value less than control%tau1 are dropped. These may be included
in R but entries less than control%tau2 are dropped from R.

In the event of breakdown within the factorization (that is, a pivot is encountered that is smaller in absolute value
than control%small), a diagonal shift is used. If the breakdown occurs for a pivot in the A-block, a shift α(1) is
used; if breakdown occurs in the (2,2) block −C, a shift −α(2) is used (α(1 : 2) > 0). It is important to try and use

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 9

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL MI30 HSL

as small a shift as possible but also to limit the number of breakdowns. The user can supply initial shifts α0(1 : 2). If
breakdown occurs, a larger shift

α1(j) = max(control%lowalpha, α0(j)×control%shift factor),

is tried, where j = 1 if breakdown is in the A-block and j = 2 otherwise. The process continues until an incomplete
factorization of

K̄ = SQT
(

A BT

B −C

)
QS+

(
α(1)I 0

−α(2)I

)
is successful. If breakdown occurs at the same (or nearly the same) stage of the factorization for two successive shifts,
to try and limit the number of restarts, α(j) is increased by a factor of 2 × control%shift factor. Conversely, if
αk(j) = control%lowalpha(j), to prevent an unnecessarily large shift from being used, the shift is decreased by
setting

αk+1(j) = αk(j)/control%shift factor2,

and applying the incomplete factorization algorithm to

K̄k+1 = SQT
(

A BT

B −C

)
QS+

(
αk+1(1)I 0

−αk+1(2)I

)
.

If this factorization is also breakdown free, the process is repeated (up to control%maxshift times). In all cases, the
values of the final shifts are returned to the user in info%alpha(1:2), along with the number of shifts tried and the
number of restarts (info%nrestart).

For further details, see [1] and [2].

References:

[1] J. A. Scott and M. Tůma. (2013). HSL MI28: an efficient and robust limited-memory incomplete Cholesky
factorization code. RAL Technical Report. RAL-P-2013-004. See also ACM Trans. Math. Software 40 (2014),
24:1–24:19.

[2] J. A. Scott and M. Tůma. (2014). On signed incomplete Cholesky factorization preconditioners for saddle-point
systems. RAL Technical Report. RAL-P-2014-003. See also SIAM J. Sci. Computing 36 (2014), A2984–A3010.

5 EXAMPLE OF USE

Suppose we wish to use preconditioned GMRES to solve the linear system Kx = b with

K =


4 0 1 −1
0 3 0 2
1 0 4 0
−1 2 0 −1

 and b =


4
5
5
0

 .

We may use the following code:

program mi30_spec_double

use hsl_mi30_double
implicit none

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 10

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL HSL MI30

integer, parameter :: wp = kind(1.0d0)
integer, parameter :: long = selected_int_kind(18)

type(mi30_control) :: control
type(mi30_info) :: info
type(mi30_keep) :: keep

integer, allocatable :: ptr(:),row(:)
real(wp), allocatable :: h(:,:), val(:), w(:,:)

! Arrays and scalars required by the GMRES code mi24
real(wp) :: resid
real(wp) :: cntl24(4),rsave24(9)
integer :: icntl24(8),isave24(17),info24(4)
logical :: lsave24(4)

integer :: iact,locy,locz,lsize,m,m_restart,n,nz,rsize

! Read in the matrix data
read (5,*) n,m,nz

! Choose restart parameter for GMRES
m_restart = 10

! Allocate arrays for matrix and for GMRES
allocate (ptr(n+1),row(nz),val(nz), &

w(n,m_restart+7),h(m_restart+1,m_restart+2))
read (5,*) ptr(1:n+1)
read (5,*) row(1:nz)
read (5,*) val(1:nz)
read (5,*) w(1:n,1) ! Right-hand side array

! Choose lsize and rsize
lsize = 1
rsize = 1

control%iorder = 0 ! use supplied order
control%iscale = 0 ! do not scale

! Compute the preconditioner
call mi30_factorize(n, m, ptr, row, val, lsize, rsize, keep, control, info)

if (info%flag.lt.0) then
write (*,’(a,i4)’) ’ Unexpected error from mi30_factorize. flag = ’,info%flag
call mi30_finalise(keep,info)
stop

end if

! Prepare to use the GMRES code mi24 with preconditioning

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 11

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL MI30 HSL

call mi24id(icntl24, cntl24, isave24, rsave24, lsave24)
icntl24(3) = 2 ! right preconditioning

iact = 0
do

call MI24AD(iact, n, m_restart, w, size(w, 1), locy, locz, h, &
size(h, 1), resid, icntl24, cntl24, info24, isave24, &
rsave24, lsave24)

select case(iact)
case(-11) ! Error

write (*,’(a,i4)’) ’ Unexpected error from mi24. flag = ’,info24(1)
exit

case(1) ! convergence achieved
write (*,’(a,i3,a)’) &

’ GMRES Convergence in ’,info24(2),’ iteration(s)’
write (*,’(a)’) ’ Solution = ’
write (*,’(5es12.4)’) w(1:n,2)
exit

case(2) ! Form y = Kz
call mxmult(n,ptr,row,val,w(1:n,locz),w(1:n,locy))

case(4) ! Preconditioner
call mi30_precondition(1, n, keep, w(1:n,locz), w(1:n,locy), info)

end select

end do
call mi30_finalise(keep,info)

contains
!**
! sparse matrix-vector multiplication y=K*x.
! Lower triangle of sparse matrix K held.

subroutine mxmult(n,ptr,row,val,x,y)

real(wp), parameter :: zero = 0.0_wp

integer, intent(in) :: n
integer, intent(in) :: ptr(n+1),row(:)
real(wp), intent(in) :: val(:),x(n)
real(wp), intent(out) :: y(n)

integer:: i,j,k
real(wp) :: sum

y = zero

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 12

HSL MI30 v1.4.1
Documentation date: November 15, 2023

HSL HSL MI30

do i = 1,n
sum = zero
do j = ptr(i),ptr(i+1)-1

k = row(j)
if (k.ne.i) y(k) = y(k) + val(j)*x(i)
sum = sum + val(j)*x(k)

end do
y(i) = y(i) + sum

end do

end subroutine mxmult

end program mi30_spec_double

With the input data:

4 1 7
1 4 6 7 8
1 3 4 2 4 3 4
4. 1. -1. 3. 2. 4. -1.
4. 5. 5. 0.

we obtain the following output:

GMRES Convergence in 1 iteration(s)
Solution =
1.0000E+00 1.0000E+00 1.0000E+00 1.0000E+00

All use is subject to licence.
http://www.hsl.rl.ac.uk/ 13

HSL MI30 v1.4.1
Documentation date: November 15, 2023

