
HSL MI31
PACKAGE SPECIFICATION HSL

1 SUMMARY

The package uses the preconditioned conjugate gradient method to solve the n× n symmetric positive definite
linear system

Au = b, (1.1)

and implements several stopping criteria based on lower and upper bounds of the A-norm of the error. If
M = UT U is the preconditioning matrix, the routine actually solves the preconditioned system

Ay = b, (1.2)

with A = U−T AU−1 and b = U−T b and recovers the solution u = U−1y.
Reverse communication is used. Control is returned to the user for preconditioning operations and the products of

A with a vector z.

ATTRIBUTES — Version: 1.2.1 (30 January 2023). Types: Real (single, double). Calls: DOT, NRM2, SCAL,
AXPY. Date: July 2004. Origin: M. Arioli, Rutherford Appleton Laboratory, and Gianmarco Manzini, IMATI-CNR,

Pavia, Italy. Language: Fortran 90.

2 HOW TO USE THE PACKAGE

Access to the package requires a USE statement such as

Single precision version
USE HSL MI31 single

Double precision version
USE HSL MI31 double

2.1 Argument lists and calling sequences

There are two procedures for user calls:

(a) MI31I/ID sets default values for the components of the arrays that hold controlling parameters. It should nor-
mally be called once prior to calls to MI31A/AD .

(b) MI31A/AD uses the conjugate gradient method to solve Au= b, optionally using preconditioning. The subroutine
uses a reverse communication mechanism for preconditioning operations and matrix-vector products.

2.1.1 To set default values of controlling parameters

The single precision version

CALL MI31I(ICNTL, CNTL)

The double precision version

CALL MI31ID(ICNTL, CNTL)
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ICNTL is an INTEGER array of length 20. On return it contains default values. For further information, see Section 2.2.

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 4. On return, it contains default values. For
further information, see Section 2.2.

2.1.2 The conjugate gradient subroutine

The conjugate gradient subroutine is called as follows:

The single precision version

CALL MI31A(N, RHS, W, LDW, ICNTL, CNTL, IDO, INFO, RINFO, IPTR)

The double precision version

CALL MI31AD(N, RHS, W, LDW, ICNTL, CNTL, IDO, INFO, RINFO, IPTR)

N is an INTEGER variable of INTENT(IN) that must be set by the user to the number of columns n of the matrix A.
Restriction: N≥ 1.

RHS is a REAL (DOUBLE PRECISION in the D version) array of INTENT(IN) and length N that must be set by the user to
hold the right-hand side b of the system; it is unchanged by the routine.

W is a REAL (DOUBLE PRECISION in the D version) array of dimension (LDW,7) such that

W(1:N,1) on input, if ICNTL(2) is nonzero, the array must be set by the user to store the initial estimate of the
solution u(0); on output the array contains the current estimate of the solution vector u(k);

W(1:N,2) workspace that contains the conjugate direction vector p(k);

W(1:N,3) workspace that contains an approximation for the residual vector r(k) = b−Au(k);

W(1:N,4) workspace;

W(1:N,5) workspace;

W(1:N,6) workspace;

W(1:N,7) workspace.

LDW is an INTEGER variable INTENT(IN) that must be set by the user to the leading dimension of the array W. Restric-
tion: LDW ≥ N.

ICNTL is an INTEGER array of length 20 whose default values are set by MI31I/ID , see Section 2.1.1. It contains
control parameters that can be set by the user, see Section 2.2. Restriction: ICNTL(3) = 0,1,2,3, or 4.

CNTL is a REAL (DOUBLE PRECISION in the D version) array of length 4 whose default values are set by MI31I/ID ,
see Section 2.1.1. It contains control parameters that can be set by the user, see Section 2.2.

IDO is an INTEGER variable that must be set by the user to a negative value to start a new solution. The user must
not modify its value during the solution process. On return from MI31A/AD , it tells the user what to do before
recalling MI31A/AD , or that the solution has been found. MI31A/ADwill set it to the following values

0 the iteration has completed and either convergence has been achived, or INFO(2)< 0 and a error has been
detected (see Section 2.4);

1 the user must supply the matrix-vector product

W(:,4)= AW(:,IPTR). (2.1)
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2 the user must supply the solution of the system:

MW(:,4)= W(:,IPTR). (2.2)

INFO is an INTEGER array of length 10 that need not be set by the user. On return from MI31A/AD it contains data
about the calculation and the error messages, see Section 2.3. The user must not modify its value.

RINFO is a REAL (DOUBLE PRECISION in the D version) array of length 40 that need not be set by the user. On return
from MI31A/AD , it contains data about the calculation, see Section 2.3. The user must not modify its value.

IPTR is an INTEGER variable that need not be set by the user. On return from MI31A/AD , it indicates the column of
the array W to be considered. The user must not modify its value.

2.2 Control parameters

ICNTL(1) controls whether the user wishes to use preconditioning. When ICNTL(1) is set to 0, no preconditioning is
used. When it is set to a value other than 0, the user must supply the preconditioning. The default value is 0.

ICNTL(2) controls whether the user wishes to supply an initial estimate of the solution vector u. When this parameter
is set to 0, the vector u(0) = (0,0, . . . ,0)T is used as the initial estimate. When it is set to a value other than 0,
the user must supply an initial estimate in W(1:N,1) prior to the first call to MI31A/AD. It has default value 0.

ICNTL(3) controls which stopping criterion offered by the routine is to be used. The default value is 0. The possible
choices are listed below (see Section 4 for the details).

0 the computed solution is accepted if

||b−Au(k)||2 ≤ max(||b−Au(0)||2 ∗CNTL(1),CNTL(2)),

where u(0) is the initial estimate of the solution.

1 a lower bound estimate of the error is given by using the Hestenes and Stiefel rule with delay d (equivalent to
the Gauss quadrature formula) equal to ICNTL(4). The user must supply the value of the tolerance factor
η (see (4.3) and (4.4) in Section 4) to be used in the stopping criterion in CNTL(1).

2 a lower bound estimate of the error is given by using the Gauss-Radau quadrature formula with ICNTL(4)
internal points. The user must supply the value of the tolerance factor η (see (4.3) and (4.4) in Section 4) to
be used in the stopping criterion in CNTL(1) and an estimate of the maximum eigenvalue of A in CNTL(3).

3 an upper bound estimate of the error is given by using the Gauss-Radau quadrature formula with ICNTL(4)
internal points. The user must supply the value of the tolerance factor η (see (4.3) and (4.4) in Section 4) to
be used in the stopping criterion in CNTL(1) and an estimate of the minimum eigenvalue of A in CNTL(4).

4 a lower and an upper estimate of the error is given by using the Gauss-Radau quadrature formula with
ICNTL(4) internal points. The user must supply the value of the tolerance factor η (see (4.3) and (4.4) in
Section 4) to be used in the stopping criterion in CNTL(1) and an estimate of the minimum and maximum
eigenvalue of A in CNTL(3) and CNTL(4) respectively. In this case, the stopping criterion uses the value
of the upper bound of the error.

ICNTL(4) holds the number of past iterates used to estimate the error in the stopping criteria selected by ICNTL(3)>
0, that is the number of points in the quadrature formulae of Gauss (Hestenes and Stiefel rule) and Gauss-Radau,
see the description in section 4.1. If ICNTL(3)> 0, ICNTL(4) must be set by the user. Its default value is zero.

ICNTL(5) holds the maximum number of iterations allowed to be performed by the routine. Its default value is zero.
If the value is not positive on a entry with IDO negative, MI31A/AD sets its value to N.
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ICNTL(6) controls which formula the user wishes to use for computing the estimate of the energy norm of the solu-
tion.

The possible choices are:

0 (this is the default value) the estimator is based on a formula that does not require the use of the scalar product
between b−Au(0) and the current u(k) (see (4.4) in Section 4.1);

1 the estimator is based on the formula (4.3) of Section 4.1.

The default value gives the cheapest choice, and, when u(0) = 0 the estimates obtained by setting ICNTL(6)
equal to 0 or to 1 are equal. Nevertheless, when u(0) 6= 0 and ICNTL(6) is equal to 0, the computation can
present numerical instabilities when ‖u‖2

A ≈machine precision. In this case the more costly formula given by
choosing ICNTL(6) equal to 1, may be more stable.

ICNTL(7) is the unit number for error messages and has default value 6. If the user supplies a different unit numbers,
messages are printed to the user supplied unit. If ICNTL(7) is negative, printing is suppressed.

ICNTL(8) is the unit number for warning messages and has default value 6. If the user supplies a different unit
numbers, messages are printed to the user supplied unit. If ICNTL(8) is negative, printing is suppressed.

CNTL(1) and CNTL(2) are two convergence tolerances, see Section 4.1. The default values are CNTL(1)=
√

ε, where
ε is the machine precision, and CNTL(2)=0.

- When ICNTL(3)=0 the stopping criterion is

stop when ||b−Au(k)||2 ≤max(||b−Au(0)||2 ∗CNTL(1),CNTL(2)), (2.3)

where u(k) is the current iterate solution and u(0) is the initial estimate of the solution.

- When ICNTL(3)> 0, the stopping criterion is

stop when error est≤ norm u est ∗ CNTL(1) (2.4)

where error est is the estimate provided by the selected criterion and norm u est is the estimate of the
energy norm of the solution u selected by ICNTL(6). In this case, CNTL(1) is the quantity η described in
Section 4.1, and CNTL(2) must not be changed by the user between the calls of MI31I/ID and MI31A/AD .

CNTL(3) must be set by the user to an estimate of the minimum eigenvalue of the matrix A when the Gauss-Radau
upper bound estimate of the error is required, that is ICNTL(3)=3 or ICNTL(3)=4. Its default value is zero.

CNTL(4) must be set by the user to an estimate of the maximum eigenvalue of the matrix A when the Gauss-Radau
lower bound estimate of the error is required, that is ICNTL(3)=2 or ICNTL(3)=4. Its default value is zero.

2.3 Information returned to the user

INFO(1) returns the current iteration number.

INFO(2) is the output error flag. It informs the user about any error detected by the routine during the initialisation
phase in the input parameters. A value of 0 means that no error is detected. See Section 2.4 for the list of the
possible error messages.

RINFO(1) contains the value of norm u est, the estimate of the energy norm of the solution u selected by ICNTL(6);

RINFO(2) contains the value of the Euclidean norm of the residual at the starting iteration, ||r(0)||;

RINFO(3) contains the current value of the curvature p(k)T Ap(k)/p(k)T p(k) ;
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RINFO(4) contains the current value of the factor z(k)T )r(k) (see Section 4);

RINFO(5) contains the previous value of the factor z(k−1)T r(k−1) (see Section 4);

RINFO(6) contains the current value of αk−1 (see Section 4);

RINFO(7) contains the current value of βk (see Section 4).

RINFO(8) contains the Euclidean norm of the residual at the current iteration, ||r(k)|| (see Section 4);

RINFO(9) contains the square of the lower bound on the error estimate provided by the Hestenes and Stiefel formula;

RINFO(10) contains the square of the lower bound on the error estimate provided by the Gauss-Radau integration
formula;

RINFO(11) contains the the square of upper bound on the error estimate provided by the Gauss-Radau integration
formula.

The remaining values of INFO and RINFO are not used in this version.

2.4 Warning and error messages

If INFO(2) has zero value on output, the code did not detect any error in the initialization phase. Otherwise, a negative
value indicates one of the following errors.

-1 incorrect value of N; this parameter must be a strictly positive integer value;

-2 incorrect value of LDW; LDW must be greater or equal to N;

-3 incorrect value in ICNTL(3); this parameter must be set to an integer value in the range [0, 4];

-4 incorrect value in ICNTL(4); this parameter must be set to a strictly positive integer value;

-5 incorrect value in CNTL(1); this parameter must be set to a strictly positive real number;

-6 incorrect value in CNTL(3); this parameter must be set to a strictly positive real number;

-7 incorrect value in CNTL(4); this parameter must be set to a strictly positive real number;

-8 incorrect value in CNTL(3) and CNTL(4); these two values must be set such that CNTL(3) is strictly less than
CNTL(4).

-9 the matrix A is singular: the curvature p(k)T Ap(k)/p(k)T p(k) = 0;

-10 the preconditioning matrix M is singular: the factor z(k)T )r(k) = 0 but r(k) 6= 0 .

A positive value of INFO(3) gives the following warning messages.

1 the matrix A is indefinite; convergence is not guaranteed;

2 the matrix A is ill-conditioned or close to be semidefinite positive; convergence is not guaranteed;

3 the preconditioning matrix M is not positive definite; convergence is not guaranteed;

4 ICNTL(5) was negative on a entry with IDO negative and MI31A/AD set ICNTL(5) equal to N.
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3 GENERAL INFORMATION

Workspace: W

Other routines called directly: BLAS: DOT, NRM2, SCAL, AXPY.

Other modules used directly: None.

Input/output: Output is provided under the control of ICNTL(7) and ICNTL(8) for error and warning messages
respectively.

Restrictions: N≥ 1, LDW ≥ N, ICNTL(3) = 0,1,2,3,4.

Portability: ISO Fortran 90.

4 METHOD

We implement the conjugate gradient method for solving the linear system of equations

Au = b (4.1)

where A ∈ IRN×N is large, sparse, symmetric and positive definite and b ∈ IRN . In particular, we use a reverse commu-
nication approach, and we implement several stopping criteria. These stopping criteria are based on different backward
error analysis choices and error estimators.

4.1 Error estimators and stopping criteria

4.1.1 Euclidean norm of the residual

When using an iterative method for solving the linear system (4.1), we can incorporate a stopping criterion based on
the a posteriori component-wise or norm-wise backward error theory [2].

The common criterion of using the ratio of the residual to the right-hand side,

ω =
||r(u(k))||2
||b||2

implies that, if ω 6= ∞, there is a vector δb with ||δb||2 ≤ ω||b||2, such that

Au(k) = b+δb.

In practice, the conjugate gradient iterations are often stopped when the value of ω is less than or equal to the
square root of machine precision. Nevertheless, the experiments in [1] give very good evidence that these stopping
criteria based on the Euclidean norm of the residual b−Au(k) can be unsatisfactory and frequently misleading when
the linear system (4.1) has originated from a finite-element approximation of a partial differential equation.

4.1.2 Energy norm of the residual

If we use the conjugate gradient method, it is quite natural to have a stopping criterion which takes advantage of the
minimization property of this method. At each step k the conjugate gradient minimizes the energy norm of the error
δu = u−u(k) (u solution of (4.1)) on a Krylov space Kk:

min
u(k)∈Kk+u0

δuT Aδu.
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The space IRN with the norm
‖y‖A = (yT Ay)1/2

induces on its dual space the dual norm
‖f‖A−1 = (fT A−1f)1/2.

Therefore, a stopping criterion such as:

IF ‖Au(k)−b‖A−1 ≤ η‖b‖A−1 THEN STOP , (4.2)

with η < 1 an a priori threshold fixed by the user, will guarantee that a u(k) which satisfies it, is the solution of the
perturbed linear system:

Au(k) = b− r(k),
‖u−u(k)‖A = ‖r(k)‖A−1 ≤ η‖b‖A−1 = η‖u‖A.

The choice of η will depend on the properties of the problem that we want to solve and, in practical cases, η can
frequently be much larger than ε, the roundoff unit of the computer finite precision arithmetic. When (4.1) is a linear
system obtained from the finite-element approximation of a partial-differential equation, a reasonable choice for η

would be η = h or η = h2 where h = max
T∈Th

diameter(T ) with Th a set of disjoint triangles {T} which covers the domain

Ω where the partial differential equation is defined (see [1] for a detailed analysis).

We implement two variants of the stopping criterion that estimate the value e(k)A = r(k)T A−1r(k) at each step k:

• the variant of Gauss quadrature proposed by Hestenes and Stiefel that gives a lower bound τk for e(k−d)
A ;

• the Gauss-Radau quadrature variant that requires the estimate λmin of the smallest eigenvalue of the precondi-
tioned matrix A to give an upper bound Ξk for e(k−d)

A , and the estimate λmax of the biggest eigenvalue of the

preconditioned matrix A to give a lower bound ξk for e(k−d)
A .

In [1], the choice of the delay parameter d is discussed. If the convergence is reasonably fast (i.e. the preconditioner
is effective) d = 5 is a successful compromise, and numerical experiments support this conclusion.

Finally, following [3], we implement two estimates of bT A−1b. Therefore, (4.2) can be replaced by:

IF ςk ≤ η
2
(

bT u(0)+ r(0)T u(k)
)

THEN STOP , (4.3)

or by

IF ςk ≤ η
2(r(0)T u(0)+bT u(0)+

k

∑
j=1

ψ j) THEN STOP , (4.4)

where ςk is one of the estimates τk, ξk, or Ξk. Moreover, (4.3) needs only a scalar product at each step and, when
u(0) 6= 0, may be more stable than (4.4).

If we introduce a preconditioner to speed up the convergence rate of the conjugate gradient algorithm, we do not
need to update the previous technique for the evaluation of e(k)A as can be seen in [1].

In Figure 1, we describe a variant of the preconditioned conjugate gradient algorithm which incorporates the
proposed stopping criterion with a suitable choice of d.
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Given an initial guess u(0), compute r(0) = b−Au(0), and solve Mz(0) = r(0). Set p(0) = z(0), β0 = 0,
α−1 = 1, χ1 = 1, ς0 = 1, and k = 0:

while ςk > η2norm u est do
k = k+1;

αk−1 =
r(k−1)T z(k−1)

p(k−1)T Ap(k−1) ; ψk =
(r(k−1)T z(k−1))2

p(k−1)T Ap(k−1) ; ωk =
1

αk−1
+

βk−1

αk−2
;

if k = 1 then
ρ1 = ω1; φ1 = ω1−λmin; Φ1 = ω1−λmax;

else

χk =
χk−1πk−1

ρk−1
; ρk = ωk−

π2
k−1

ρk−1
; φk = ωk−ωu

k−1; Φk = ωk−ωl
k−1;

endif
u(k) = u(k−1)+αk−1p(k−1);

r(k) = r(k−1)−αk−1Ap(k−1);

Solve Mz(k) = r(k);

βk =
r(k)T z(k)

r(k−1)T z(k−1) ; πk =

√
βk

αk−1
;

pk = zk +βkp(k−1);

ωu
k = λmin +

π2
k

Φk
; ωl

k = λmax +
π2

k
φk

; ψl
k =

χ2
kπ2

k

ρk(ω
l
kρk−π2

k)
; ψu

k =
χ2

kπ2
k

ρk(ω
u
kρk−π2

k)
;

if k > d then

τk =
k

∑
j=k−d+1

ψ j; ξk = ‖r(0)‖2
M−1ψl

k + τk; Ξk = ‖r(0)‖2
M−1 ψu

k + τk;

ςk = τk or{= ξk} or{= Ξk};
norm u est = (r(0)T u(0)+bT u(0)+∑

k
j=1 ψ j) or{= bT u(0)+ r(0)T u(k)}

endif
end while.

Figure 1: Preconditioned conjugate gradient algorithm (PCG)
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5 EXAMPLE OF USE

Suppose we wish to solve the problem Ax = b, where

A =



2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2 −1

−1 2 −1
−1 2


, b =



1
1
1
1
1
1
1
1
1
1


. (5.1)

The following program uses the conjugate gradient method and a diagonal Jacobi preconditioner. The iterations
are stopped by using the the lower bound on the error estimate provided by the Gauss quadrature formula.

program main
use hsl_mi31_double
implicit none

integer, parameter :: n = 10, ldw = n
double precision, parameter :: zero = 0.0d0, one = 1.0d0, two = 2.0d0
double precision, dimension(n) :: rhs
double precision, dimension(n,7) :: w
integer, dimension(10) :: info
double precision, dimension(40) :: rinfo
integer, dimension(20) :: icntl
double precision, dimension(4) :: cntl
integer :: Ido, iptr, i

rhs(1:n) = one/(n*n) !! right-hand-side
w = 0.d0 !! set w
w(1:n,1) = one !! initial solution
!! set pars
info = 0
rinfo = 0.d0

call mi31id( icntl, cntl )

!! set icntl
icntl(1) = 1 !! external preconditioner
icntl(2) = 1 !! user initial solution
icntl(3) = 1 !! uses Hestenes-Stiefel
icntl(4) = 3 !! uses 3 quadrature points
!! set cntl
cntl(1) = 1.d-6 !! convergence tolerance

Ido = -1 !! start iterations
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do while ( Ido .ne. 0 )

call mi31ad( n, rhs, w, ldw, icntl, cntl, Ido, info, rinfo, iptr )

select case ( Ido )

case (1) !! Matrix-Vector product
w(1,4) = two*w(1,iptr) - w(2,iptr)
do i=2,n-1

w(i,4) = -w(i-1,iptr) + two*w(i,iptr) - w(i+1,iptr)
end do
w(n,4) = - w(n-1,iptr) + two*w(n,iptr)

case (2) !! Jacobi preconditioner
do i=1,n

w(i,4) = w(i,iptr)/two
end do

end select

end do

if (info(2) .ge. 0) then
write(*,’(a,i5)’) ’error code = ’,info(2)
!! print the final solution
write(*,’(a,i5)’) ’number of iterations = ’,info(1)
write(*,’(a)’) ’ i X(i)’
write(*,’(i5,1x,1pe14.7)’) (i,w(i,1), i=1,n)

end if
end program main

This produces the following output:

error code = 0
number of iterations = 8

i X(i)
1 5.0000000E-02
2 9.0000000E-02
3 1.2000000E-01
4 1.4000000E-01
5 1.5000000E-01
6 1.5000000E-01
7 1.4000000E-01
8 1.2000000E-01
9 9.0000000E-02

10 5.0000000E-02
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